正题 题目链接:https://www.luogu.com.cn/problem/P4321 题目大意 给出\(n\)个点\(m\)条边的一张无向图,\(q\)次询问. 每次询问给出一个点集和一个起点,求从起点出发随机游走经过所有点集的期望步数. \(n\in[1,18],m\in[1,\frac{n(n-1)}{2}],q\in[1,10^5]\) 解题思路 首先\(n\)很小可以状压经过点的状态,然后因为这个询问是给出起始状态所以需要倒推.设\(f_{s,x}\)表示目前状态是\(s\),在…
1076: [SCOI2008]奖励关 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 3074  Solved: 1599 [Submit][Status][Discuss] Description 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃).  宝物一共有n种,系统每次抛出这n种宝物的概率都…
题意:给定一个 n 个结点的有向图,然后从 1 结点出发,从每个结点向每个后继结点的概率是相同的,当走到一个没有后继结点后,那么程序终止,然后问你经过每个结点的期望是次数是多少. 析:假设 i 结点的出度为 di,期望执行次数为 xi,对于一个有 n 个前继结点的 a1, a2, a3 ... an 的结点 i,可以列出方程 xi = xa1/da1 + xa2/da2 + .. + xan/dan,根据每个结点都可以列出一个方程,然后就有 n 个方程,其中结点 1 比较特殊,因为是由它开始的所…
http://www.lydsy.com/JudgeOnline/problem.php?id=1076 有时候人蠢还真是蠢.一开始我看不懂期望啊..白书上其实讲得很详细的,什么全概率,全期望(这个压根没说). 还是看了论文才知道全期望这个东西.. 意思很明白,就是说Y的期望等于 所有 可能的情况的期望值乘上得到这个期望值的概率 的和. 很难懂吗...慢慢想. 首先你得知道期望是 之中某个事件的概率×这个事件的贡献 之和. 而且这些事件相互独立. 那么这里求全期望也就是 “这个事件的贡献” 那里…
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下.每经过一条边,要付出这条边的编号这么多的代价.现将所有边用1~m重新编号,使总代价的期望最小,求这个最小值. 题解 我们可以求出每条边的期望经过次数,然后贪心地让经过次数多的边编号小即可. 直接用边来列方程求经过次数似乎列不出来,我们借助点来列方程. 设x[u]为从某个点出发的次数的期望,v为与u…
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不满足期望的线性,所以考虑拆位. 对于每一个二进制位,经过边权为0仍是x,经过边权为1变成1-x(转化成减法才满足期望的线性). 设f[x]表示点x到n的路径xor期望,f[n]=0,根据全期望公式: $$f[i]=\sum_{j}\frac{f[j]}{out[i]}\ \ , \ \ w(i,j)=0$$…
3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status][Discuss] Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分…
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解]显然,应使经过次数越多的边编号越小,问题转化为求每条边的期望经过次数. 边数太多,容易知道f(u,v)=f(u)/out(u)+f(v)/out(v),所以转化为求每个点的期望经过次数,这就是驱逐猪猡了. 设f[x]表示点x的期望经过次数,根据全期望公式(讨论“经过“的问题不能依赖于下一步): $$f[x…
题目链接 loj2542 题解 设\(f[i][S]\)表示从\(i\)节点出发,走完\(S\)集合中的点的期望步数 记\(de[i]\)为\(i\)的度数,\(E\)为边集,我们很容易写出状态转移方程 ①若\(i \notin S\) \[f[i][S] = \frac{1}{de[i]}\sum\limits_{(i,j) \in E}(f[j][S] + 1)\] ②若\(i \in S\) 除非\(\{i\} = S\),\(f[i][S] = 0\) 否则 \[f[i][S] = \f…
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. 考虑 dp 的话,令 \(dp[x]\) 表示从 \(x\) 开始走的答案. 如果 \(x \in S\),那么 \(dp[x] = 0\): 否则,\(dp[x] = 1 + \frac{\sum\limits_{(x, y) \in T} dp[y]}{deg_x}\). 这个东西直接树上高斯…