kafka数据清理】的更多相关文章

Kafka将数据持久化到了硬盘上,允许你配置一定的策略对数据清理,清理的策略有两个,删除和压缩. 数据清理的方式 删除 log.cleanup.policy=delete启用删除策略直接删除,删除后的消息不可恢复.可配置以下两个策略:清理超过指定时间清理:  log.retention.hours=16超过指定大小后,删除旧的消息:log.retention.bytes=1073741824为了避免在删除时阻塞读操作,采用了copy-on-write形式的实现,删除操作进行时,读取操作的二分查找…
本期内容 : Spark Streaming数据清理原理和现象 Spark Streaming数据清理代码解析 Spark Streaming一直在运行的,在计算的过程中会不断的产生RDD ,如每秒钟产生一个BachDuration同时也会产生RDD, 在这个过程中除了基本的RDD外还有累加器.广播变量等,对应Spark Streaming也有自己的对象.源数据及数据清理机制, 在运行中每个BachDuration会触发了Job ,由于会自动产生对象.数据及源数据等运行完成后肯定要自动进行回收 …
直接贴面试题: 怎么保证数据 kafka 里的数据安全? 答: 生产者数据的不丢失kafka 的 ack 机制: 在 kafka 发送数据的时候,每次发送消息都会有一个确认反馈机制,确保消息正常的能够被收到. 如果是同步模式:ack 机制能够保证数据的不丢失,如果 ack 设置为 0,风险很大,一般不建议设置为 0 如果是异步模式:通过 buffer 来进行控制数据的发送,有两个值来进行控制,时间阈值与消息的数量阈值,如果 buffer 满了数据还没有发送出去,如果设置的是立即清理模式,风险很大…
Ubuntu下Sentry部署 Sentry作为一款常见以及使用人数较多的监控服务,在接口监控.错误捕捉.错误报警等方面是非常不错的,在此之前我也用过Prometheus监控,各有各的好处,有兴趣的同学可以对这些都了解一下. 安装docker apt install curl -y sh -c "$(curl -fsSL https://get.docker.com)" systemctl start docker systemctl enable docker 安装docker-co…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 找时间记录一下利用Gobblin采集kafka数据的过程,话不多说,进入正题 一.Gobblin环境变量准备 需要配置好Gobblin0.7.0工作时对应的环境变量,可以去Gobblin的bin目录的gobblin-env.sh配置,比如 export GOBBLIN_JOB_CONFIG_DIR=~/gobblin/gobblin-config-dir export GOBBLIN_WORK…
Spark Streaming揭秘 Day16 数据清理机制 今天主要来讲下Spark的数据清理机制,我们都知道,Spark是运行在jvm上的,虽然jvm本身就有对象的自动回收工作,但是,如果自己不进行管理的,由于运行过程中大量产生对象,内存很快就会耗尽.我们可以认为数据清理就是SparkStreaming自己的"GC". 从DStream开始 RDD是在DStream中产生的,RDD的操作也是在DStream中进行的,所以DStream会负责RDD数据的生命周期. 在DStream中…
本文将展示 1.如何使用spark-streaming接入TCP数据并进行过滤: 2.如何使用spark-streaming接入TCP数据并进行wordcount: 内容如下: 1.使用maven,先解决pom依赖 <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…
转载自:https://blog.csdn.net/weixin_41615494/article/details/7952173 一.基于Receiver的方式 原理 Receiver从Kafka中获取的数据存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据,如果突然数据暴增,大量batch堆积,很容易出现内存溢出的问题. 在默认的配置下,这种方式可能会因为底层失败而丢失数据.如果要让数据零丢失,就必须启用Spark Streaming的…
垃圾数据清理,简单的说,就是删除不需要的那些数据,释放存储空间 最常用的就是delete命令.truncate命令,甚至是删除表空间重建,具体操作都很简单,不是本文的重点 下面,总结几个垃圾数据清理常见的几个问题 1.查找数据量最大的表 可以直接执行下面的SQL语句 select t.table_name, t.num_rows, t.blocks, t.empty_blocks from user_tables t where t.num_rows is not null order by t…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
Hadoop基础-HDFS数据清理过程之校验过程代码分析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 想称为一名高级大数据开发工程师,不但需要了解hadoop内部的运行机制,还需要掌握hadoop在写入过程中的报文分析.当然代码的调试步骤是一个开发必须得会的技能!想要掌握这三个技能,我们就可以拿HDFS写入过程来练练手,了解一下平时就几行的代码在它的内部是如何帮我们实现数据传输的. 一.Idea代码调试简介 1>.编写测试代码 /* @author :yinzhengjie…
好久好久没有更新博客了,之前自学的估计也都忘记差不多了.由于毕业选择从事的行业与自己的兴趣爱好完全两条路,心情也难过了很久,既然入职了就要好好干,仍要保持自己的兴趣,利用业余时间重拾之前的乐趣. 从基本的数据清理学起吧 讲一下drop函数的用法 删除表中的某一行或者某一列更明智的方法是使用drop,它不改变原有的df中的数据,而是可选择性的返回另一个dataframe来存放删除后的数据. 删除无效项 df[df.isnull()] #返回的是个true或false的Series对象(掩码对象),…
原创文章,转载请注明:转载自 听风居士博客(http://www.cnblogs.com/zhouyf/) 本期内容: 一.Spark Streaming 数据清理总览 二.Spark Streaming 数据清理过程详解 三.Spark Streaming 数据清理的触发机制 Spark Streaming不像普通Spark 的应用程序,普通Spark程序运行完成后,中间数据会随着SparkContext的关闭而被销毁,而Spark Streaming一直在运行,不断计算,每一秒中在不断运行都…
关于这次总结还是要从一个bug说起....... 场景描述:项目的基本处理流程为:从文件系统读取每隔一分钟上传的日志并由Spark Streaming进行计算消费,最后将结果写入InfluxDB中,然后在监控系统中进行展示,监控.这里的spark版本为2.2.1. Bug:程序开发完成之后,每个batch处理时间在15~20s左右,上线之后一直在跑,监控系统中数据也没有什么异常,sparkui中只关注了任务处理时间,其他并没有在意.后来程序运行了2天18个小时之后,监控系统发出报警NO DATA…
本讲从二个方面阐述: 数据清理原因和现象 数据清理代码解析 Spark Core从技术研究的角度讲 对Spark Streaming研究的彻底,没有你搞不定的Spark应用程序. Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的累加器.广播变量,所以需要对对象及 元数据需要定期清理.每个batch duration运行时不断触发job后需要清理rdd和元数据.Clinet模式 可以看到打印的日志,从文件日志也可以看到清理日志内容. 现在要看其背后的事情: Sp…
Spark Streaming接收Kafka数据存储到Hbase fly spark hbase kafka 主要参考了这篇文章https://yq.aliyun.com/articles/60712([点我])(https://yq.aliyun.com/articles/60712), 不过这篇文章使用的spark貌似是spark1.x的.我这里主要是改为了spark2.x的方式 kafka生产数据 闲话少叙,直接上代码: import java.util.{Properties, UUID…
本文介绍flume读取kafka数据的方法 代码: /*******************************************************************************  * Licensed to the Apache Software Foundation (ASF) under one  * or more contributor license agreements.  See the NOTICE file  * distributed wi…
目录 Zabbix 数据清理的一系列操作 一.问题 二.解决办法 Zabbix 数据清理的一系列操作 基本信息: Zabbix 版本 4.0.9 MySQL 版本 5.5 一.问题 我们将 Zabbix 的数据存放在测试环境的 RDS (阿里云)上,但是这个 RDS 购买的时候就只有 10G 的存储,所以监控没有几个月,我们的数据库就报存储空间不足的预警了. 首先进行排查,是哪些表占用的存储空间比较多呢,我们发现主要是 history 和 history_uint 这两个表.占用空间最大的是 h…
一.需求 需要做实时数据接入的接口.数据最终要写入库,要做到高并发,数据的完整,不丢失数据. 二.技术选型 1.因为只是做简单的接口,不需要复杂功能,所以决定用flask这个简单的python框架(因为做运维的作者只会python所以只能在python框架里找): 2.要做到数据的实时性,考虑到数据落地入库可能io会延时比较大,所以决定数据通过接口先写入消息队列中间件kafka (为什么用kafka因为kafka数据是顺序写文件,效率还可以,主要是的写入文件可以保证自定义时间内的数据不丢失:ka…
1.KafkaUtils.createDstream 构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] ) 使用了receivers来接收数据,利用的是Kafka高层次的消费者api,对于所有的receivers接收到的数据将会保存在spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,该日志存储在HDF…
简单理解为:Receiver方式是通过zookeeper来连接kafka队列,Direct方式是直接连接到kafka的节点上获取数据 Receiver 使用Kafka的高层次Consumer API来实现.receiver从Kafka中获取的数据都存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据.然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写…
摘要:本次分享主要介绍Kafka产品的原理和使用方式,以及同步数据到MaxCompute的参数介绍.独享集成资源组与自定义资源组的使用背景和配置方式.Kafka同步数据到MaxCompute的开发到生产的整体部署操作等内容. 演讲嘉宾简介:耿江涛,阿里云智能技术支持工程师 以下内容根据演讲视频以及PPT整理而成. 本次分享主要围绕以下两个方面: 一.背景介绍二.具体操作流程1.Kafka消息队列使用以及原理2.资源组介绍以及配置3.同步过程及其注意事项 4.开发测试以及生产部署 一.背景介绍 1…
简介: Spark-Streaming获取kafka数据的两种方式-Receiver与Direct的方式,可以简单理解成: Receiver方式是通过zookeeper来连接kafka队列, Direct方式是直接连接到kafka的节点上获取数据了. 一.基于Receiver的方式 这种方式使用Receiver来获取数据.Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的,然后Spar…
摘要: 本文向您详细介绍如何使用DataWorks数据同步功能,将Kafka集群上的数据迁移到阿里云MaxCompute大数据计算服务. 前提条件 搭建Kafka集群 进行数据迁移前,您需要保证自己的Kafka集群环境正常.本文使用阿里云EMR服务自动化搭建Kafka集群,详细过程请参见:Kafka 快速入门. 本文使用的EMR Kafka版本信息如下:EMR版本: EMR-3.12.1集群类型: Kafka软件信息: Ganglia 3.7.2 ZooKeeper 3.4.12 Kafka 2…
本文总结在使用Excel进行数据分析时,最常用的功能和函数. Excel的功能和函数非常多,用进废退,除了学习基本的函数和功能,最重要的是遇到问题可以快速的搜索并解决. 首先Excel可以处理的数据量有大多? 使用Ctrl +  → , Ctrl + ↓可以看到下界为104,8576,右界为24(X)*6(F)*4(D)=576    (Excel 2010版本) 一.数据清理 1)Trim()--空格清理 清除掉字符串两边的空格 2)CONCATENATE()--连接 CONCATENATE函…
1.概述 最近有同学留言咨询Kafka数据落地到Hive的一些问题,今天笔者将为大家来介绍一种除Flink流批一体以外的方式(流批一体下次再单独写一篇给大家分享). 2.内容 首先,我们简单来描述一下数据场景,比如有这样一个数据场景,有一批实时流数据实时写入Kafka,然后需要对Topic中的数据进行每隔5分钟进行落地到Hive,进行每5分钟分区存储.流程图如下所示: 2.1 环境依赖 整个流程,需要依赖的组件有Kafka.Flink.Hadoop.由于Flink提交需要依赖Hadoop的计算资…
简单理解为:Receiver方式是通过zookeeper来连接kafka队列,Direct方式是直接连接到kafka的节点上获取数据 一.Receiver方式: 使用kafka的高层次Consumer api来实现的,Receiver从kafka中获取的数据都是存储在spark executor的内存中,然后Spark Streaming启动的job会去处理那些数据.然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可用机制,让数据零丢失,就必须启用Spark Strea…
SparkStreaming直连方式读取kafka数据,使用MySQL保存偏移量 1. ScalikeJDBC 2.配置文件 3.导入依赖的jar包 4.源码测试 通过MySQL保存kafka的偏移量,完成直连方式读取数据 使用scalikeJDBC,访问数据库. 1. ScalikeJDBC ScalikeJDBC 是一款Scala 开发者使用的简洁 DB 访问类库,它是基于 SQL 的,使用者只需要关注 SQL 逻辑的编写,所有的数据库操作都交给 ScalikeJDBC.这个类库内置包含了J…
SparkStreaming接收Kafka数据的两种方式 SparkStreaming接收数据原理 一.SparkStreaming + Kafka Receiver模式 二.SparkStreaming + Kafka Direct模式 三.Direct模式与Receiver模式比较 SparkStreaming2.3+kafka 改变 四.SparkStreaming+Kafka维护消费者offset 五.实例:SparkStreaming集成Kafka,读取Kafka中数据,进行数据统计计…