GPU加速计算】的更多相关文章

GPU加速计算 NVIDIA A100 Tensor Core GPU 可针对 AI.数据分析和高性能计算 (HPC),在各种规模上实现出色的加速,应对极其严峻的计算挑战.作为 NVIDIA 数据中心平台的引擎,A100 可以高效扩展,系统中可以集成数千个  A100 GPU,也可以利用 NVIDIA 多实例 GPU (MIG) 技术将每个 A100 划分割为七个独立的 GPU 实例,以加速各种规模的工作负载.第三代 Tensor Core 技术为各种工作负载的更多精度水平提供加速支持,缩短获取…
U-n-i-t-y 提供了 [Compute Shader][link1] 来使得我们可以将大量的复杂重复的计算交给并行的 GPU 来处理,正是由于并行原因,这样就可以大大加快计算的速度,相比在 CPU 的线程中有着巨大的优势.类似 OpenglES 3.0 的 [Transform Feedback][link2] 和 Metal 的 [Data-Parallel Compute Processing][link3] 都是用来达到同样的目的的.但是很遗憾 Compute Shader 基本和移…
Numba:高性能计算的高生产率 在这篇文章中,笔者将向你介绍一个来自Anaconda的Python编译器Numba,它可以在CUDA-capable GPU或多核cpu上编译Python代码.Python通常不是一种编译语言,你可能想知道为什么要使用Python编译器.答案当然是:运行本地编译的代码要比运行动态的.解译的代码快很多倍.Numba允许你为Python函数指定类型签名,从而在运行时启用编译(这就是“Just-in-Time”,即时,也可以说JIT编译).Numba动态编译代码的能力…
AI解决方案:边缘计算和GPU加速平台 一.适用于边缘 AI 的解决方案 AI 在边缘蓬勃发展.AI 和云原生应用程序.物联网及其数十亿的传感器以及 5G 网络现已使得在边缘大规模部署 AI 成为可能.但它需要一个可扩展的加速平台,能够实时推动决策,并让各个行业都能为行动点(商店.制造工厂.医院和智慧城市)提供自动化智能.这将人.企业和加速服务融合在一起,从而使世界变得"更小". 更紧密. 适用于各行各业的边缘 AI 解决方案 卓越购物体验 借助 AI 驱动的见解,各地的大型零售商可让…
安装环境:wondows 64bit Teano安装测试 1. Anaconda 安装 Anaconda是一个科学计算环境,自带的包管理器conda很强大.之所以选择它是因为它内置了python,以及numpy.scipy两个必要库和一些其他库,比起自己安装要省事. 首先下载Anaconda-2.1.0-Windows-x86_64.exe 安装选择默认配置即可,下砸地址.安装成功后效果如下: 这里有Anaconda管理器(Anaconda Command Prompt),输入conda lis…
之前学习了CNN的相关知识,提到Yoon Kim(2014)的论文,利用CNN进行文本分类,虽然该CNN网络结构简单效果可观,但论文没有给出具体训练时间,这便值得进一步探讨. Yoon Kim代码:https://github.com/yoonkim/CNN_sentence 利用作者提供的源码进行学习,在本人机子上训练时,做一次CV的平均训练时间如下,纵坐标为min/CV(供参考): 机子配置:Intel(R) Core(TM) i3-4150 CPU @ 3.50GHz, 32G,x64 显…
1. cudamat简介 cudamat是一个python语言下,利用NVIDIA的cuda sdk 进行矩阵运算加速的库.对于不熟悉cuda编程的程序员来说,这是一个非常方便的GPU加速方案.很多工程和项目中都使用了cudamat,例如gnumpy,deepnet等. 2. 安装 cudamat的github地址如下:https://github.com/cudamat/cudamat. 下载完成后,运行命令 python setup.py install来进行安装. windows下安装需要…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
开发环境介绍 在SuperVessel云上,我们为大家免费提供当前火热的caffe深度学习开发环境.SuperVessel的Caffe有如下优点: 1) 免去了繁琐的Caffe环境的安装配置,即申请即使用. 2) 集成了SuperVessel先进的GPU虚拟化技术,POWER8,GPU与cuDNN库三重加速的Caffe,极大的节约您的模型训练时间. 3) 环境集成了一些优秀的Caffe开源模型,如图片识别与人脸识别模型,帮助您更快的学习理解Caffe,助力您搭建有趣的深度学习应用. Caffe深…
前言 GDAL库中提供的gdalwarp支持各种高性能的图像重采样算法,图像重采样算法广泛应用于图像校正,重投影,裁切,镶嵌等算法中,而且对于这些算法来说,计算坐标变换的运算量是相当少的,绝大部分运算量都在图像的重采样算法中,尤其是三次卷积采样以及更高级的重采样算法来说,运算量会成倍的增加,所以提升这些算法的处理效率优先是提高重采样的效率.由于GPU的多核心使得目前对于GPU的并行处理非常热,同时也能大幅度的提升处理速度.基于上述原因,GDALWARP也提供了基于OPENCL的GPU加速,之前在…