Spark算子讲解(一)】的更多相关文章

1:Zip算子 def zip[U](other: RDD[U])(implicit arg0: ClassTag[U]): RDD[(T, U)] 将两个RDD做zip操作,如果当两个RDD分区数目不一样的话或每一个分区数目不一样的话则会异常. 例如: val rdd1 = sc.parallelize(Array(1,2,3,4,5,6),2) val rdd2 = sc.parallelize(Array(1,2,3,4,5,6),3) rdd.zip(rdd1).collect 异常信息…
1:glom def glom(): RDD[Array[T]] 将原RDD的元素收集到一个数组,创建一个数组类型的RDD 2:getNumPartitions final def getNumPartitions: Int 求RDD的分区书 3:groupBy def groupBy[K](f: (T) ⇒ K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])] 根据指定函数进行分组,例如: scala> rdd1.collect res61:…
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操作 Spark算子:RDD基本转换操作(2)–coalesce.repartition Spark算子:RDD基本转换操作(3)–randomSplit.glom Spark算子:RDD基本转换操作(4)–union.intersection.subtract Spark算子:RDD基本转换操作(5…
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallelize(List() val…
  UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import java.util.Map; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.jav…
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.HashSet; import java.util.Iterator; import java.util.Set; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.ap…
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功能.但也有些功能暂时无法使用.比如reduceByKey,在DataFrame和DataSet里是没有的.所以觉得有必要做一些梳理. 准备工作 测试数据,json格式: { "DEVICENAME": "test1", "LID": 17050131…
Spark SQL讲解 Spark SQL是支持在Spark中使用Sql.HiveSql.Scala中的关系型查询表达式.它的核心组件是一个新增的RDD类型SchemaRDD,它把行对象用一个Schema来描述行里面的所有列的数据类型,它就像是关系型数据库里面的一张表.它可以从原有的RDD创建,也可以是Parquet文件,最重要的是它可以支持用HiveQL从hive里面读取数据. 下面是一些案例,可以在Spark shell当中运行. 首先我们要创建一个熟悉的Context,熟悉spark的人都…
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Key-Value型的数据. 3.Action算子,这类算子会触发SparkContext提交作业. 一.Value型Transformation算子 1)map val a = sc.parallel…
Spark算子实战应用 数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase 相关数据文件 : users.dat ---UserID::Gender::Age::Occupation::Zip-code movies.dat --- MovieID::Title::Genres ratings.dat ---UserID::MovieID::Rating::Timestamp SogouQ.mini 完成以下业务需求…