支持向量机SVM(二)】的更多相关文章

从1995年Vapnik等人提出一种机器学习的新方法支持向量机(SVM)之后,支持向量机成为继人工神经网络之后又一研究热点,国内外研究都很多.支持向量机方法是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(Generalizatin Ability). SVM一种新的非常有发展前景的分类识别技术.SVM是建立在统计学习理论中…
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn也集成了SVM算法. 一.简要介绍一下sklearn Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html#support-vector-machines skleran中集成了许多算法,其导入包的方式如下所示, 逻辑…
1. 什么是支持向量机?   在机器学习中,分类问题是一种非常常见也非常重要的问题.常见的分类方法有决策树.聚类方法.贝叶斯分类等等.举一个常见的分类的例子.如下图1所示,在平面直角坐标系中,有一些点,已知这些点可以分为两类,现在让你将它们分类. (图1) 显然我们可以发现所有的点一类位于左下角,一类位于右上角.所以我们可以很自然将它们分为两类,如图2所示:红色的点代表一类,蓝色的点代表一类. (图2) 现在如果让你用一条直线将这两类点分开,这应该是一件非常容易的事情,比如如图3所示的三条直线都…
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α:第二部分是SMO算法对于对偶因子的求解:第三部分是核函数的原理与应用,讲核函数的推理及常用的核函数有哪些:第四部分是支持向量机的应用,按照机器学习实战的代码详细解读. 机器学习之支持向量机(一):支持向量机的公式推导 机器学习之支持向量机(二):SMO算法 机器学习之支持向量机(…
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9596898.html 1. 解决什么问题? 最基本的应用是数据分类,特别是对于非线性不可分数据集.支持向量机不仅能对非线性可分数据集进行分类,对于非线性不可分数据集的也可以分类 (我认为这才是支持向量机的真正魅力所在,因为现实场景中,样本数据往往是线性不可分的). 现实场景一 :样本数据大部分是线性可分的,但是只是在样本中含有少量…
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原成二维: 刚利用“开心”“不开心”的重量差实现将二维数据变成三维的过程,称为将数据投射至高维空间,这正是核函数的功能 在SVM中,用的最普遍的两种把数据投射到高维空间的方法分别是多项式内核.径向基内核(RFB) 多项式内核: 通过把样本原始特征进行乘方来把数据投射到高维空间[如特征1^2,特征2^3…
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督式学习模型及相关的学习算法:在给定的一组训练实例中,每个训练实例会被标记其属性类别(两个类别中的一个),是非概率的二元线性分类器. SVM模型是将采用尽可能宽的.明显的间隔将实例分开,使得实例分属不同的空间:然后将新的实例映射到某一空间,基于新的实例所属空间来预测其类别. SVM 除了可进行线性分类…
支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: 如何使用OpenCV函数 CvSVM::train 训练一个SVM分类器, 以及用 CvSVM::predict 测试训练结果. 什么是支持向量机(SVM)? 支持向量机 (SVM) 是一个类分类器,正式的定义是一个能够将不同类样本在样本空间分隔的超平面. 换句话说,给定一些标记(label)好的训练样本 (监督式学习), SVM算法输出一个最优化的分隔超平面. 如何来界定一个超平面是不是最优的呢? 考虑如下问题: 假设给定一些分属于两类…
http://ju.outofmemory.cn/entry/119152 http://www.cnblogs.com/zhizhan/p/4412343.html 支持向量机SVM是从线性可分情况下的最优分类面提出的.所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小.推广到高维空间,最优分类线就成为最优分类面. 支持向量机是利用分类间隔的思想进行训练…
简介 支持向量机SVM是一种二分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器.支持向量机学习方法包含3种模型:线性可分支持向量机.线性支持向量机及非线性支持向量机.当训练数据线性可分时,通过硬间隔最大化,学习一个线性的分类器,即线性可分支持向量机:当训练数据近似线性可分时,通过软间隔最大化,也学习一个线性的分类器,即线性支持向量机:当训练数据线性不可分时,通过使用核技巧及软间隔最大化,学习非线性支持向量机.线性支持向量机支持L1和L2的正则化变型.关于正则化,可以参见http:/…
机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很…
支持向量机SVM算法实践 利用Python构建一个完整的SVM分类器,包含SVM分类器的训练和利用SVM分类器对未知数据的分类, 一.训练SVM模型 首先构建SVM模型相关的类 class SVM: def __init__(self, dataSet, labels, C, toler, kernel_option): self.train_x = dataSet # 训练特征 self.train_y = labels # 训练标签 self.C = C # 惩罚参数 self.toler…
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SVM 本文要点 1.Please explain Support Vector Machines (SVM) like I am a 5 year old - Feynman Technique 2.kernel trick 一.术语解释 1.1 what is support vector? 从名词…
关于支持向量机SVM,这里也只是简单地作个要点梳理,尤其是要注意的是SVM的SMO优化算法.核函数的选择以及参数调整.在此不作过多阐述,单从应用层面来讲,重点在于如何使用libsvm,但对其原理算法要理解. SVM理论推导是有些复杂的,关键是怎么把目标函数在约束条件下,最终转化为一个凸二次优化问题.在这里推荐一个写的比较经典的文章,july的博客里的一篇文章<支持向量机通俗导论(理解SVM的三层境界)>,博文链接:http://blog.csdn.net/v_july_v/article/de…
原文连接 - https://zhuanlan.zhihu.com/p/31652569 摘要 支持向量机 (SVM) 是一个非常经典且高效的分类模型.但是,支持向量机中涉及许多复杂的数学推导,并需要比较强的凸优化基础,使得有些初学者虽下大量时间和精力研读,但仍一头雾水,最终对其望而却步.本文旨在从零构建支持向量机,涵盖从思想到形式化,再简化,最后实现的完整过程,并展现其完整思想脉络和所有公式推导细节.本文力图做到逻辑清晰而删繁就简,避免引入不必要的概念.记号等.此外,本文并不需要读者有凸优化的…
支持向量机(svm)英文为Support Vector Machines 第一次接触支持向量机是2017年在一个在线解密游戏"哈密顿行动"中的一个关卡的二分类问题,用到了台湾教授写的svm库libsvm 'C#'版.支持向量机在深度学习之前统治了机器学习近10年,机器学习有个没有免费的午餐定理,意思是说没有一个算法在任何情况下都是最好的. 支持向量机的优势 泛化性能比较好, 不容易过拟合 可以在较少的数据下取得好的性能 存在全局最优解 存在高效实现的训练算法 可以使用kernel tr…
[白话解析] 深入浅出支持向量机(SVM)之核函数 0x00 摘要 本文在少用数学公式的情况下,尽量仅依靠感性直觉的思考来讲解支持向量机中的核函数概念,并且给大家虚构了一个水浒传的例子来做进一步的通俗解释. 0x01 问题 在学习核函数的时候,我一直有几个很好奇的问题. Why 为什么线性可分很重要? Why 为什么低维数据升级到高维数据之后,就可以把低维度数据线性可分? What 什么是核函数,其作用是什么? How 如何能够找到核函数? 不知道大家是否和我一样有这些疑问,在后文中, 我将通过…
https://www.cnblogs.com/luyaoblog/p/6775342.html 首先,我们需要安装scikit-learn 一.导入sklearn算法包  在python中导入scikit-learn的方法: scikit-learn里面已经实现了基本上所有基本机器学习的算法,具体的使用方法详见官方文档说明,http://scikit-learn.org/stable/auto_examples/index.html#support-vector-machines scikit…
线性可分支持向量机--SVM (1) 给定线性可分的数据集 假设输入空间(特征向量)为,输出空间为. 输入 表示实例的特征向量,对应于输入空间的点: 输出 表示示例的类别. 线性可分支持向量机的定义: 通过间隔最大化或者等价的求出相应的凸二次规划问题得到的分离超平面 以及决策函数: *什么是间隔最大化呢? 首先需要定义间隔, 下面介绍了函数间隔和几何间隔,几何间隔可以理解为训练点到超平面的距离, 二维中就是点到直线的距离,我们要做的就是最小化几何间隔. 函数间隔和几何间隔 函数间隔 给定训练数据…
前言 总结了2017年找实习时,在头条.腾讯.小米.搜狐.阿里等公司常见的机器学习面试题. 支持向量机SVM 关于min和max交换位置满足的 d* <= p* 的条件并不是KKT条件 Ans:这里并非是KKT条件,要让等号成立需要满足strong duality(强对偶),之后有学者在强对偶下提出了KKT条件.KKT条件成立需要满足constraint qualifications,而constraint qualifications之一就是Slater条件--即:凸优化问题,如果存在一个点x…
支持向量机SVM(Support Vector Machine) 关注公众号"轻松学编程"了解更多. [关键词]支持向量,最大几何间隔,拉格朗日乘子法 一.支持向量机的原理 Support Vector Machine.支持向量机,其含义是通过支持向量运算的分类器.其中"机"的意思是机器,可以理解为分类器. 那么什么是支持向量呢?在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量. 见下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑…
上一篇文章我们介绍了使用逻辑回归来处理分类问题,本文我们讲一个更强大的分类模型.本文依旧侧重代码实践,你会发现我们解决问题的手段越来越丰富,问题处理起来越来越简单. 支持向量机(Support Vector Machine, SVM)是最受欢迎的机器学习模型之一.它特别适合处理中小型复杂数据集的分类任务. 一.什么是支持向量机 SMV在众多实例中寻找一个最优的决策边界,这个边界上的实例叫做支持向量,它们"支持"(支撑)分离开超平面,所以它叫支持向量机. 那么我们如何保证我们得到的决策边…
感知机与SVM一样都是使用超平面对空间线性可分的向量进行分类,不同的是:感知机的目标是尽可能将所有样本分类正确,这种策略指导下得出的超平面可能有无数个,然而SVM不仅需要将样本分类正确,还需要最大化最小分类间隔,对SVM不熟悉的朋友可以移步我另一篇文章:支持向量机(SVM)之硬阈值 - ZhiboZhao - 博客园 (cnblogs.com). 为了系统地分析二者的区别,本文还是首先介绍感知机模型,学习策略以及求解思路 一.感知机模型 还是假定在 \(p\) 维空间有 \(m\) 组训练样本对…
前言 学习本章节前需要先学习: <机器学习--最优化问题:拉格朗日乘子法.KKT条件以及对偶问题> <机器学习--感知机> 1 摘要: 支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器.支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次规划的问题,其学习算法就为求解凸二次规划的最优化算法序列最小最优化算法(SMO). 关键词:二类分类:间…
(简单介绍一下支持向量机,详细介绍尤其是算法过程可以查阅其他资) 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须…
在上两节中,我们讲解了机器学习的决策树和k-近邻算法,本节我们讲解另外一种分类算法:支持向量机SVM. SVM是迄今为止最好使用的分类器之一,它可以不加修改即可直接使用,从而得到低错误率的结果. [案例背景] 从前有两个地主,他们都是占山为王的一方霸主.本来各自吃饱自己的饭万事无忧,可是人心不知足蛇吞象啊,自己总是都想占对方的一亩三分地,冲突争吵从来都没有停歇过.当时的环境就是谁狠这土地就归谁,但是我们现在想从科学的角度来分析,如何让他们的地盘均分,画条边界线,从此互不干扰呢? [演示代码] i…
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻算法: 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 决策树:最优划分属性,结点的“纯度”越来越高. 即如何选择最优划分属性,一般而言,随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高. 支持向量机(SVM)是支持(或支撑)平…
支持向量机SVM是从线性可分情况下的最优分类面提出的.所谓最优分类,就是要求分类线不但能够将两类无错误的分开,而且两类之间的分类间隔最大,前者是保证经验风险最小(为0),而通过后面的讨论我们看到,使分类间隔最大实际上就是使得推广性中的置信范围最小.推广到高维空间,最优分类线就成为最优分类面. 支持向量机是利用分类间隔的思想进行训练的,它依赖于对数据的预处理,即,在更高维的空间表达原始模式.通过适当的到一个足够高维的非线性映射,分别属于两类的原始数据就能够被一个超平面来分隔.如下图所示: 空心点和…