汉诺塔matlab实现】的更多相关文章

Matlab的递归调用,好久不用matlab了,练练手.   global handCount; handCount = 1; huuotsun(1, 2, 3, 3)     function huuotsun(cur, buf, tar, num)     global handCount;     if num == 1         str = sprintf('c %d plate  %d to %d ', handCount, cur, tar);         disp(str…
目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus is possible for using animation. e.g. if n = 2 ; A→B ; A→C ; B→C; if n = 3; A→C ; A→B ; C→B ; A→C ; B→A ; B→C ; A→C; 翻译:模拟汉诺塔问题的移动规则:获得奖励的移动方法还是有可能的.…
using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace MyExample_Hanoi_{    class Program    {        static void Main(string[] args)        {            HanoiCalculator c = new HanoiCalculator();            Cons…
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) { printf("%c-->%c\n",x,z); } else { move(n-1,x,z,y); //将n-1个盘子从x借助z移到y上 printf("%c-->%c\n",x,z); //将第n个盘子从x移到z上 move(n-1,y,x,z);…
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,1. 一次只移动一片: 2. 不管在哪根针上,小片必在大片上…
C语言学习宝典(4) 指针:可以有效的表示复杂的数据结构,能动态的分配动态空间,方便的使用字符串,有效的使用数组,能直接处理内存单元 不掌握指针就没有掌握C语言的精华 地址:系统为每一个变量分配一个内存单元,内存区的每一个字节有一个编号,这就是“地址” 指针的定义; 基类型 * 指针变量名 例如 int *pointer; 可以使用赋值语句使一个指针变量得到另一个变量的地址,从而使它指向一个该变量. 例1  通过指针变量访问整形变量 /******************* 功能:通过指针变量访…
经典递归算法汉诺塔分析: 当A柱子只有1个盘子,直接A --> C 当A柱子上有3个盘子,A上第一个盘子 --> B, A上最后一个盘子 --> C, B上所有盘子(1个) --> C 当A柱子上有那个盘子,A上n-1个盘子 --> B,A上最后一个盘子 --> C, B上所有盘子(n-1个)--> C 规律: 当有1个盘子时,A(1) --> C 当有n个盘子时,A(n-1)--> B, A(1)--> C, B(n-1) --> C d…
#include<iostream> #include<cstdio> #include<cmath> using namespace std; ]; int rule(int n) { f[]=; f[]=; f[]=; ; int m=k; ; ;i<=n;i++) { f[i]=(f[i-]+l)%; m--; ) { k++; m=k; l*=; l%=; } } return f[n]; } int main() { int t; while(~scan…
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1495  Solved: 916[Submit][Status][Discuss] Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘…
Answer: //Li Cuiyun,October 14,2016. //用递归方法编程解决汉诺塔问题 package tutorial_3_5; import java.util.*; public class HanoiTower { public static void main(String[] args) { // TODO Auto-generated method stub @SuppressWarnings("resource") Scanner sc=new Sc…