bzoj 1477 扩展欧几里德】的更多相关文章

思路:很裸的求相遇问题. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> using namespace std; ; ; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; ; LL a, b, c,…
思路:枚举洞穴个数,用扩展欧几里德暴力判断没两个人的周期. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> using namespace std; + ; ; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3…
二次联通门 : BZOJ 1477: 青蛙的约会 /* BZOJ 1477: 青蛙的约会 扩展欧几里得 列出方程, 判断一下 */ #include <iostream> #include <cstdio> typedef long long LL; #define rg register void read (LL &n) { rg char c = getchar (); ; !isdigit (c); c = getchar ()); + c - ', c = get…
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地蹦,但只可以在(X,Y),(X,-Y),(-X,Y),(-X,-Y),(Y,X),(Y,-X),(-Y,X),(-Y,-X)八个点跳来跳去. 现在,Dr. Kong想在机器人卡尔身上设计一个计数器,记录它蹦蹦跳跳的数字变化(S,T),即,路过的位置坐标值之和. 你能帮助Dr. Kong判断机器人能否…
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个m可以作为一个解当且仅当: 对于任意的i,j 模方程:c[i]+x*p[i]=c[j]+x*p[j] (mod m) 无解或者最小正整数解>min(l[i],l[j]) 这个可以用扩展欧几里德解决. 因为n<=15,所以可以暴力枚举每对i,j…
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a…
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别是:{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}.满足条件的是第2个和第8个. Input 第1行:1个整数T(1<=T<=50000),表示有多少组测试数据. 第2 - T+1行:每行三个整数N,A,B(1<=N…
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> #include <cmath> using namespace std ; #define LL __int64 LL x,y; LL ext_eulid(LL a,LL b) { LL t,d; ) { x = ; y = ; return a; } d = ext_eulid(b,a%b);…
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置之分,应对比两种情况 i,a左b右,得出方程 ax1 - by1 = d ; ii,b左a右,得出方程 bx2 - ay2 = d . 2,利用扩展欧几里德算法,解出(x1,y1).(x2,y2),并求出最小x1和x2,以及相对应的y1,y2. 3,输出x1+y1和x2+y2 中的最小值. 三,步骤…
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循环几次才会结束. 比如:当k=4时,存储的数 i 在0-15之间循环.(本题默认为无符号) 若在有限次内结束,则输出循环次数. 否则输出死循环.二,思路: 本题利用扩展欧几里德算法求线性同余方程,设循环次数为 x ,则解方程 (A + C*x) % 2^k = B ;求出最小正整数 x. 1,化简方…