[洛谷P4248][AHOI2013]差异】的更多相关文章

题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的时候,所以思路就是先找出每个节点被几个后缀经过,这显然把边反转倒着找就可以了,然后他会被出现次数sz个串经过. 出现次数等于parent树子树中np类节点的个数,这跑个dfs就好了,一个相同前缀产生的贡献是sz*(sz-1)/2 然后思考一个点可能代表多个子串,但是他们的出现次数都是相同的,所以单个…
题目大意:给一个长度为$n$的字符串,求: $$\sum\limits_{1\leqslant i<j\leqslant n}|suf_i|+|suf_j|-2\times lcp(suf_i,suf_j)$$ 题解:建一棵后缀树,这个式子就成了后缀树上所有后缀之间的距离(后缀树可以把字符串反着加入后缀自动机得到的$fail$数组而来),然后有两种做法: 1. 把$\sum\limits_{1\leqslant i<j\leqslant n}|suf_i|+|suf_j|$直接求出来$$\be…
补博客! 首先我们观察题目中给的那个求\(ans\)的方法,其实前两项没什么用处,直接\(for\)一遍就求得了 for (int i=1;i<=n;i++) ans=ans+i*(n-1); 那么我们考虑剩下的部分应该怎么求解! 首先这里有一个性质.对于任意两个后缀\(i,j\),他们的\(lcp\)长度是他们对应的\(rank\)之间的\(height\)的\(min\) (左开右闭) 或者这样说 \(lcp(i,j) = min(height[rank[i]+1],height[rank[…
题目传送门:洛谷 P4248. 题意简述: 定义两个字符串 \(S\) 和 \(T\) 的差异 \(\operatorname{diff}(S,T)\) 为这两个串的长度之和减去两倍的这两个串的最长公共前缀的长度. 给定一个字符串,定义从第 \(i\) 个字符开始的后缀为 \(Suf_i\). 求 \(\sum_{1\le i<j\le n}\operatorname{diff}(Suf_i,Suf_j)\). 题解: 化简式子,原式等于 \[\begin{align*}&\left(\su…
P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \sum_{1\leqslant i<j\leqslant n}\text{len}(T_i)+\text{len}(T_j)-2\times\text{lcp}(T_i,T_j)\] 其中,\(\text{len}(a)\)表示字符串 \(a\) 的长度,\(\text{lcp}(a,b)\) 表示字…
luogu P4248 [AHOI2013]差异 链接 luogu 思路 \(\sum\limits_{1<=i<j<=n}{{len}(T_i)+{len}(T_j)-2*{lcp}(T_i,T_j)}\) =\(\sum\limits_{1<=i<j<=n}{{len}(T_i)+{len}(T_j)}-\sum\limits_{1<=i<j<=n}2*{lcp}(T_i,T_j)\) 前半部分是\(\frac{n*(n+1)(n-1)}{2}\)…
线段树分治 其实思想说起来是比较简单的,我们把这个题里的所有操作(比如连边删边查询balabala)全部拍到一棵线段树上,然后对着整棵树dfs一下求解答案,顺便把操作做一下,回溯的时候撤销一下即可.虽然有的操作需要以区间形式拍到树上,导致它可能会被拆成两个,但线段树的形态同样保证了操作最多只会被拆分\(log(区间长度)\)次,保障了复杂度. 洛谷P5227[AHOI2013]连通图 传送门 其实就是线段树分治+带撤销并查集,并查集写按秩合并,不能路径压缩(否则会破坏结构,就会撤销出奇怪的效果)…
题目传送门:洛谷P4396. 题意简述: 给定一个长度为\(n\)的数列.有\(m\)次询问,每次询问区间\([l,r]\)中数值在\([a,b]\)之间的数的个数,和数值在\([a,b]\)之间的不同的数的个数. 题解: 第一问可以用主席树维护,但是第二问呢? 考虑离线处理询问,用莫队算法. 问题转化为加入一个数,删除一个数,统计数值在一个区间中的数的个数. 离散化后可以用树状数组维护,但是复杂度多个log,变成了\(O(n\sqrt{n}\log n)\). 考虑对数值也分块,先离散化,然后…
可能是一个 SAM 常用技巧?感觉 SAM 的基础题好多啊.. 题目描述 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀,求: \[ \sum_{1\le i<j\le n}len(T_i)+len(T_j)-2\times lcp(T_i,T_j) \] 其中,\(len(a)\) 表示字符串 \(a\) 的长度,\(lcp(a,b)\) 表示字符串 \(a\) 和字符串 \(b\) 的最长公共前缀. 输入输出格式 输入格式:…
题目链接 \[ans=\sum_{1<=i<j<=n}len(T_i)+len(T_j)-2*lcp(T_i,T_j)\] 观察这个式子可以发现,前面两个\(len\)是常数,后面的其实就是反串有每对前缀的相同后缀乘以其长度之和. 两个前缀的相同后缀就是这两个串在parent tree上对应的点的\(LCA\),于是直接树上统计就行了. #include <cstdio> #include <cstring> #include <algorithm>…