用java写bp神经网络(二)】的更多相关文章

根据前篇博文<神经网络之后向传播算法>,现在用java实现一个bp神经网络.矩阵运算采用jblas库,然后逐渐增加功能,支持并行计算,然后支持输入向量调整,最后支持L-BFGS学习算法. 上帝说,要有神经网络,于是,便有了一个神经网络.上帝还说,神经网络要有节点,权重,激活函数,输出函数,目标函数,然后也许还要有一个准确率函数,于是,神经网络完成了: public class Net { List<DoubleMatrix> weights = new ArrayList<D…
接上篇. Net和Propagation具备后,我们就可以训练了.训练师要做的事情就是,怎么把一大批样本分成小批训练,然后把小批的结果合并成完整的结果(批量/增量):什么时候调用学习师根据训练的结果进行学习,然后改进网络的权重和状态:什么时候决定训练结束. 那么这两位老师儿长的什么样子,又是怎么做到的呢? public interface Trainer { public void train(Net net,DataProvider provider); } public interface…
接上篇. 在(一)和(二)中,程序的体系是Net,Propagation,Trainer,Learner,DataProvider.这篇重构这个体系. Net 首先是Net,在上篇重新定义了激活函数和误差函数后,内容大致是这样的: List<DoubleMatrix> weights = new ArrayList<DoubleMatrix>(); List<DoubleMatrix> bs = new ArrayList<>(); List<Acti…
孔子曰,吾日三省吾身.我们如果跟程序打交道,除了一日三省吾身外,还要三日一省吾代码.看代码是否可以更简洁,更易懂,更容易扩展,更通用,算法是否可以再优化,结构是否可以再往上抽象.代码在不断的重构过程中,更臻化境.佝偻者承蜩如是,大匠铸剑亦复如是,艺虽小,其道一也.所谓苟日新,再日新,日日新. 本次对前两篇文章代码进行重构,主要重构函数接口体系,和权重矩阵的封装. 简单函数 所说函数,是数学概念上的函数.数学上的函数,一般有一自变量$x$(输入)和对应的值$y=f(x)$(输出).其中$x$可以是…
工作中需要预测一个过程的时间,就想到了使用BP神经网络来进行预测. 简介 BP神经网络(Back Propagation Neural Network)是一种基于BP算法的人工神经网络,其使用BP算法进行权值与阈值的调整[78].在20世纪80年代,几位不同的学者分别开发出了用于训练多层感知机的反向传播算法,David Rumelhart和James McClelland提出的反向传播算法是最具影响力的.其包含BP的两大主要过程,即工作信号的正向传播与误差信号的反向传播,分别负责了神经网络中输出…
写在前面:本实验用到的图片均来自google图片,侵删! 实验介绍 用python手写一个简单bp神经网络,实现人脸的性别识别.由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lfw数据集等等),所以我从google图片下载了一些中国明星的照片来作为本次实验的数据集. 训练数据集:5位中国的男明星(每个明星10张),6位中国的女明星(每个明星10张). 测试数据集:6张女生,6张男生 实验环境 win10 python3.5+opencv+dlib+PIL 说明:上面涉及到的…
https://blog.csdn.net/u011913612/article/details/79253450…
最近用python写了一个实现手写数字识别的BP神经网络,BP的推导到处都是,但是一动手才知道,会理论推导跟实现它是两回事.关于BP神经网络的实现网上有一些代码,可惜或多或少都有各种问题,在下手写了一份,连带着一些关于性能的分析也写在下面,希望对大家有所帮助. 加一些简单的说明,算不得理论推导,严格的理论推导还是要去看别的博客或书.  BP神经网络是一个有监督学习模型,是神经网络类算法中非常重要和典型的算法,三层神经网络的基本结构如下: 这是最简单的BP神经网络结构,其运行机理是,一个特征向量的…
一.单层感知器 1958年[仅仅60年前]美国心理学家FrankRosenblant剔除一种具有单层计算单元的神经网络,称为Perceptron,即感知器.感知器研究中首次提出了自组织.自学习的思想,而且对对所解决的问题存在着收敛算法,并能从数学上严格证明,因而对神经网络的研究齐了重要作用. 1.单层感知器模型 单层感知器是指只有一层处理单元的感知器,如果包括输入层在内,应为两层.如图所示: a.输入层:$ X=(x_1, x_2, .., x_i, ..., x_n)^T$. b.输出层:$…
神经网络的结构 神经网络的网络结构由输入层,隐含层,输出层组成.隐含层的个数+输出层的个数=神经网络的层数,也就是说神经网络的层数不包括输入层.下面是一个三层的神经网络,包含了两层隐含层,一个输出层.其中第一层隐含层的节点数为3,第二层的节点数为2,输出层的节点数为1:输入层为样本的两个特征X1,X2. 图1 三层神经网络 在神经网络中每一个节点的都与上一层的所有节点相连,称为全连接.神经网络的上一层输出的数据是下一层的输入数据.在图中的神经网络中,原始的输入数据,通过第一层隐含层的计算得出的输…