[NOIP2003]栈】的更多相关文章

卡特兰数 卡特兰数2 卡特兰数:主要是求排列组合问题 1:括号化矩阵连乘,问多少种方案 2:走方格,不能过对角线,问多少种方案 3:凸边型,划分成三角形 4:1到n的序列进栈,有多少种出栈方案 NOIP2003 栈 //#pragma comment(linker, "/STACK:167772160")//手动扩栈~~~~hdu 用c++交 #include <cstdio> #include <cstring> #include <cstdlib>…
[NOIP2003]栈 Description 宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n. 现在可以进行两种操作: 1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作) 2.将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作) 使用这两种操作,由一个操作数序列就可以得到一系列的输出序列; 你的程序将对给定的n,计算并输出由操作数序列1,2,-,n经过操作可能得到的输出序列的总数. Solution…
2003年普及组 题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何一门数据结构的课程都会介绍栈.宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙. 题目描述 宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n. 现在可以进行两种操作,1.将一个数,…
洛谷 P1044 栈 洛谷传送门 JDOJ 1291: [NOIP2003]栈 T3 JDOJ传送门 题目描述 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要性不言自明,任何一门数据结构的课程都会介绍栈.宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙. 宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示…
卡塔兰数是组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名.历史上,清代数学家明安图(1692年-1763年)在其<割圜密率捷法>最早用到“卡塔兰数”,远远早于卡塔兰.有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”.卡塔兰数的一般公式为 C(2n,n)/(n+1). 令h(0)=1,h(1)=1,卡塔兰数数满足递归式: h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其…
一.卡特兰数(Catalan number) 1.定义 组合数学中一个常出现在各种计数问题中出现的数列(用c表示).以比利时的数学家欧仁·查理·卡特兰的名字来命名: 2.计算公式 (1)递推公式 c[n]=Σ(0≤k<n)c[k]c[n-k-1],边界条件为c[0]=1; 其递推解为c[n]=C(2n,n)/(n+1),即卡特兰数的通项公式,其中C表示数的组合: 根据组合公式我们可以化简得c[n]=2n(2n-1).....(n+2)/n!; (2)另类递推式 c[n]=c[n-1](4n-2)…
目录 第1章 绪论 第2章 从无解出发 \hookrightarrow↪ 2.1 无解情况 \hookrightarrow↪ 2.2 样例——白送的分数 第3章 “艰苦朴素永不忘” \hookrightarrow↪ 3.1 模拟 \hookrightarrow↪ 3.2 万能钥匙——DFS 第4章 骗分的关键——猜想 \hookrightarrow↪ 4.1 听天由命 \hookrightarrow↪ 4.2 猜测答案 \hookrightarrow↪ 4.3 寻找规律 \hookrightar…
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) =h(n-1)*2(2n-1)/(n+1) 具体推导请百度,这里只需记得推导公式为h(n)=h(n-1)*2(2n-1)/(n+1)即可. 我们来说说这个的应用吧,从catalan数的定义递归定义可以看出,它是由自己 本身的一部分和n减去一部分 的和得到的,也就是说,有n个物品,1个物品进行操作1,n-…
题目链接:栈 这题不难. 我们看一下,其实可以发现是卡特兰数. 不知道卡特兰数?没事,给你简单讲一下. 卡特兰数的递推式f(n)=f(0)*f(n-1)+f(1)*f(n-2)+-+f(n-2)*f(1)+f(n-1)*f(0) 这样你应该能发现规律了. 我们枚举栈空的情况就能发现是卡特兰数,我们一定有一刻是栈空的,我们枚举这一个时刻,就好像将这个序列分成两部分,第一部分为i,第二部分为n-1-i,又是乘法原理,所以相乘,最后累加即可. 给代码: #include<bits/stdc++.h>…
腾讯Bugly特约作者: 左明 首先,我们来看看 React 在世界范围的热度趋势,下图是关键词“房价”和 “React” 在 Google Trends 上的搜索量对比,蓝色的是 React,红色的是房价,很明显,人类对 React 的关注程度已经远远超过了对房价的关注. 从这些数据中,大家能看出什么? 可以很明显的看出,我在一本正经的扯淡. 从2014年到现在,React.jQuery和 Angular 的热度趋势对比,可以很明显的看到(上图),React 在全球的热度趋势增长非常快. 上图…