首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
PHP之验证码识别
】的更多相关文章
字符型图片验证码识别完整过程及Python实现
字符型图片验证码识别完整过程及Python实现 1 摘要 验证码是目前互联网上非常常见也是非常重要的一个事物,充当着很多系统的 防火墙 功能,但是随时OCR技术的发展,验证码暴露出来的安全问题也越来越严峻.本文介绍了一套字符验证码识别的完整流程,对于验证码安全和OCR识别技术都有一定的借鉴意义. 2 关键词 关键词:安全,字符图片,验证码识别,OCR,Python,SVM,PIL 3 免责声明 本文研究所用素材来自于某旧Web框架的网站 完全对外公开 的公共图片资源. 本文只做了该网…
验证码识别<1>
1. 引子 前两天访问学校自助服务器()缴纳网费,登录时发现这系统的验证码也太过“清晰”了,突然脑袋里就蹦出一个想法:如果能够自动识别验证码,然后采用暴力破解的方式,那么密码不是可以轻易被破解吗? ps:用户名就是学号,可以轻易获得,而密码是系统随机生成的6位数,组合方式仅有 10^6种,假设每次尝试须要50ms,那么大概需要14个小时,如果采用多线程,多个虚拟机(java)同时工作,估计把所有密码过一遍不会超过1个小时,这效率还凑合吧... 2. 分析 问题的关键就在于验证码识别,至于如何请求…
简单的验证码识别(opecv)
opencv版本: 3.0.0 处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕) 测试时间 : 一天+一晚 效果: 比较挫,可能是由于测试的图片是在太小了的缘故. 原理: 验证码识别作为身份证号机器识别的一个衍生,夹杂了很多干扰的噪音,所以加大了二值化的难度.以及轮廓追踪的不好协调. 操作过程大过程有以下几个: (1) 待测试的图片灰度化并二值化 (2)预先装载特征库(这里分为多样,形式不一) (3)物体轮廓检测 (4)扫描待测图片,并进行特征码比对,匹配优先 处理图片展示…
利用开源程序(ImageMagick+tesseract-ocr)实现图像验证码识别
--------------------------------------------------低调的分割线--------------------------------------------------- Linux下有两个重要的编程准则,甚至是设计哲学,就是:模块原则(使用简洁的借口拼合简单的部件)和组合原则(设计时考虑拼接组合).在Linux 下面有无数个小程序,体积小,功能简单.但是当我们将它们按一定的方式组合起来以后,它们 几乎无所不能.命令行的一个很大的好处就是方便组合.试想…
基于LeNet网络的中文验证码识别
基于LeNet网络的中文验证码识别 由于公司需要进行了中文验证码的图片识别开发,最近一段时间刚忙完上线,好不容易闲下来就继上篇<基于Windows10 x64+visual Studio2013+Python2.7.12环境下的Caffe配置学习 >文章,记录下利用caffe进行中文验证码图片识别的开发过程.由于这里主要介绍开发和实现过程,CNN理论性的东西这里不作为介绍的重点,遇到相关的概念和术语请自行研究.目前从我们训练出来的模型来看,单字识别率接近96%,所以一个四字验证码的准确率大概8…
Java验证码识别解决方案
建库,去重,切割,识别. package edu.fzu.ir.test; import java.awt.Color; import java.awt.image.BufferedImage; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.u…
简单验证码识别(matlab)
简单验证码识别(matlab) 验证码识别, matlab 昨天晚上一个朋友给我发了一些验证码的图片,希望能有一个自动识别的程序. 1474529971027.jpg 我看了看这些样本,发现都是很规则的印刷体数字,而且还没有角度旋转,所以我就直接使用数字的面积和周长两个特征量来进行检测,发现效果还是蛮不错的. 在实验中,主要问题是'6'和'9'两个数字的面积和周长都是完全一样的,所以这时候我又添加了一个重心的特征. 有些蛋疼的是数字'4'和'0'竟然面积是一样的...所以只好再引入椭圆离心率特征…
Python验证码识别处理实例(转载)
版权声明:本文为博主林炳文Evankaka原创文章,转载请注明出处http://blog.csdn.net/evankaka 一.准备工作与代码实例 1.PIL.pytesser.tesseract (1)安装PIL:下载地址:http://www.pythonware.com/products/pil/(CSDN下载) 下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去, 个人补充:上面是32位,个人查到64位地址 http://ww…
验证码识别--type2
验证码识别--type2 终于来到了彩色图像,一定有一些特点 这里的干扰项是色彩不是很鲜艳的.灰色的线条,还有单独的干扰点,根据这些特性进行去除 直接ostu的话,有的效果好,有的效果不好 本来是准备通过RGB值直接来去除的,我相信一定也有某种很好的算法,能够直接过滤掉,但是效果不好,因为对于RGB的控制没有到一个灵活运用的程度,所以还是先赚域 ycbcr的话,应该不错 这个时候就发现 出现这种情况,是因为 自动的分割,有一些比背景深,有一些比背景浅了. 再看,本例基本符合平均分割的要求,所…
验证码识别--type5
验证码识别--type5 每一种验证码都是由人设计出来.在设计过程中,可能由于多个方面的原因,造成了这样或那样的可以被利用的漏洞.验证码识别,首先需要解决的问题就是发现这些漏洞--然后利用漏洞解决问题. 这个图片看上去很复杂,有空心字符.有粘连.有干扰线,但是为什么人在识别的时候不会出错?是因为主要字符是不同颜色的.而且设计者为了防止如果随机的话出现相近的颜色造成不能被识别的结果,于是选用了6种相互之间区别都比较大的颜色——并且只有这6种颜色.这就是切入口. 另一个方面,关于具体颜色的处理,我还…