End-to-End Learning of Action Detection from Frame Glimpses in Videos  CVPR 2016  Motivation:    本文主要是想借助空间的 attention model 来去协助进行行人识别的工作.作者认为 long, read-world videos 是一个非常具有挑战的视觉问题.算法必须推理出是否出现了某个 action, 并且还要在时间步骤上推出出现在什么时刻.大部分的工作都是通过构建 frame-lev…
文章:Deep Mutual Learning 出自CVPR2017(18年最佳学生论文) 文章链接:https://arxiv.org/abs/1706.00384 代码链接:https://github.com/YingZhangDUT/Deep-Mutual-Learning…
源地址 arXiv:1712.07465: Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition 简介 识别图像中的多个标签是计算机视觉中的一项基本但具有挑战性的任务.针对现有方法计算成本高.不能有效利用空间上下文的问题,论文提出了循环迭代的结合注意力机制的强化学习框架,并进行了对应的熔断测试. 框架结构 输入部分 将图片放缩至W*H的大小,送入FCN(VGG16 ConvNet)产生特征图\…
4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812.09430 Abstract 提出了在动态图上使用自注意力 Conclusion 本文提出了使用自注意力的网络结构用于在动态图学习节点表示.具体地说,DySAT使用(1)结构邻居和(2)历史节点表示上的自我注意来计算动态节点表示,虽然实验是在没有节点特征的图上进行的,但DySAT可以很容易地推广到特…
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每个类的深度特征的中心点 2)对深度特征和其对应的类中心的距离有一定的惩罚 提出的center loss函数在CNN中可以训练并且很容易优化. 联合softmax loss和center loss,可以同时增加类间分散程度(inter-class dispension)与类内紧凑程度(intra-cl…
论文的重点在于后面approximation部分. 在<Rank Pooling>的论文中提到,可以通过训练RankSVM获得参数向量d,来作为视频帧序列的representation.而在dynamic论文中发现,这样的参数向量d,事实上与image是同等大小的,也就是说,它本身是一张图片(假如map与image同大小而不是提取的特征向量),那么就可以把图片输入到CNN中进行计算了.如下图可以看到一些参数向量d pooling的样例 参数向量d的快速计算 把计算d的过程定义一个函数.一个近似…
作者:Yong Wang, Zhihua Jin, Qianwen Wang, Weiwei Cui, Tengfei Ma and Huamin Qu 本文发表于VIS2019, 来自于香港科技大学的可视化小组(屈华民教授领导)的研究 1. 简介 图数据广泛用于各个领域,例如生物信息学,金融和社交网络分析.在过去的五十年中,已经提出了许多图布局算法,来满足所需的视觉要求,例如更少的边缘交叉,更少的节点遮挡以及更好的聚团保护.传统的图布局算法大致可以分为两个方向:基于弹簧,能量模型和基于降维模型…
YOLO的一大特点就是快,在处理上可以达到完全的实时.原因在于它整个检测方法非常的简洁,使用回归的方法,直接在原图上进行目标检测与定位. 多任务检测: 网络把目标检测与定位统一到一个深度网络中,而且可以同时在原图上检测多个物体.步骤总结如下: (1)把图片分割成S*S个方格,假如某个物体的中点落在其中一个方格,那么这个方格就对这个物体负责.这里说的物体的中点应该是指ground truth box中的物体的中心. (2)对于每个格子,预测B个bounding box以及相应的confidence…
由RCNN到FAST RCNN一个很重要的进步是实现了多任务的训练,但是仍然使用Selective Search算法来获得ROI,而FASTER RCNN就是把获得ROI的步骤使用一个深度网络RPN来实现.一个FASTER RCNN可以看作是一个RPN + FAST RCNN的组合,两者通过共享CONV LAYERS组合在一起. RPN网络 一张图片先经过CONV LAYERS得到feature map,图片的大小是任意的.然后,使用一个小的滑动网络,它与feature map的一个n*n的小窗…
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…