Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数.每天随着市场的起伏波动, 两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目.我们记录第 K 天中 A券 和 B券 的 价值分别为 AK 和 BK(元/单位金券).为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法 .比例交易法分为两个方面:(a)卖出金券:顾客提…
参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到最大收益的,那么应该用所有钱去买,相对的如果在某天卖出能得到最大收益,那么应该全部卖出 方便起见,设\( x[j]=f[j]/(a[j]*rate[j]+b[j])*rate[j] \)表示第j天最多可以拥有的A货币的数量,y[j]=f[j]/(a[j]*rate[j]+b[j])表示第j天最多可以…
题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费的最小代价(中途可以经停其它点) 输入 第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到).输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市.其中第 v 行包含 5 个非负整数 $f_v,s_v,p_v,q_v,l_v$,分别表示城市 v 的父亲城市,它…
P4027 [NOI2007]货币兑换 显然,如果某一天要买券,一定是把钱全部花掉.否则不是最优(攒着干啥) 我们设$f[j]$为第$j$天时用户手上最多有多少钱 设$w$为花完钱买到的$B$券数 $f[j]=R_{j}*w*A_{j}+w*B_{j}$ $w=f[j]/(R_{j}*A_{j}+B_{j})$ 在第$i$天的转移方程: $f[i]=R_{j}*w*A_{i}+w*B_{i}$ $w*B_{i}=-R_{j}*w*A_{i}+f[i]$ $w=-A_{i}/B_{i}*R_{j}…
[NOI2007]货币兑换 题目描述: 小 Y 最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A 纪念券(以下简称 A 券)和 B 纪念券(以下简称 B 券). 每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个实数. 每天随着市场的起伏波动,两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目. 我们记录第 K 天中 A 券和 B 券的价值分别为 \(A_{k}\)和 \(B_{k}\)​ (元/单位金券). 为了方便顾客,金券交易所提供了一种非常方便的交易方…
题面 BZOJ传送门(中文题面但是权限题) HDU传送门(英文题面) 分析 定义f[i]f[i]f[i]表示在iii时间(离散化之后)卖出手上的机器的最大收益.转移方程式比较好写f[i]=max{f[j]−p[j]+r[j]+(d[i]−d[j]−1)∗g[j]}f[i]=max\{f[j]-p[j]+r[j]+(d[i]-d[j]-1)*g[j]\}f[i]=max{f[j]−p[j]+r[j]+(d[i]−d[j]−1)∗g[j]} 显然可以斜率优化,移项之后得到(f[j]−p[j]+r[j…
题目: 一个斜率优化+CDQ好题 BZOJ2149 分析: 先吐槽一下题意:保留房子反而要给赔偿金是什么鬼哦-- 第一问是一个经典问题.直接求原序列的最长上升子序列是错误的.比如\(\{1,2,2,3\}\),选择\(\{1,2,3\}\)不改变后会发现无论如何修改都无法变成一个严格上升序列.只能选择\(\{1,2\}\),把原序列改成\(\{1,2,3,4\}\). 考虑对于两个数\(a_i\)和\(a_j(j<i)\),\(a_i\)能接在\(a_j\)后面的充要条件是\(a_i-a_j\g…
传送门 题意 初始时你有 $ s $ 元,接下来有 $ n $ 天. 在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ . 在第 $ i $ 天,你可以进行两种操作: 卖出:将 $ %OP $ 的A券和 $ %OP $ 的B券兑换成人民币,其中 $ OP $ 为 $ [0,100] $ 之间的任意实数 买入:支付 $ IP $ 元,买入A.B券的总价值为 $ IP $ 元,且买入A.B券的数量之比为 $ Rate[i] $ 人民币和金券的数量可以为一个实数.…
Description 题库链接 (按我的语文水平完全无 fa♂ 概括题意,找了 hahalidaxin 的题意简述... 有 \(AB\) 两种货币,每天可以可以付 \(IP_i\) 元,买到 \(A\) 券和 \(B\) 券,且 \(A:B=Rate_i\) ,也可以卖掉 \(OP_i\%\) 的 \(A\) 券和 \(B\) 券,每天 \(AB\) 价值为 \(A_i\) 和 \(B_i\) . 开始有 \(S\) 元, \(n\) 天后手中不能有 \(AB\) 券,给出 \(A_i,B_…
Luogu 3810 & BZOJ 3263 陌上花开/三维偏序 | CDQ分治 题面 \(n\)个元素,每个元素有三个值:\(a_i\), \(b_i\) 和 \(c_i\).定义一个元素的偏序是三个值都小于等于它的值的元素的个数,对于\([0, n)\)的每个值\(i\),求偏序为\(i\)的元素个数. 题解 这道题我使用的是CDQ分治. 这道题有三个维度,每个维度都要对应一个数据结构/算法,来逐个击破. 首先,按照\(a\)从小到大把所有元素排序,保证\(a\)从小到大. 然后,对于第二维…