113、TensorFlow变量集合】的更多相关文章

#一个tensorflow程序断开的部分可能要创建变量 # 如果有一种方法来访问所有的变量是非常有用的 #因为这个原因TensorFlow提供了集合,是一些张量的集合 #或者是其他的对象,就像tf.Variable 实例一样 # 默认情况下 tf.Variable 对象被放置在下面的两个集合中 # tf.GraphKeys.GLOBAL_VARIABLES #变量可以在多个设备之间被分享 # tf.GraphKeys.TRAINABLE_VARIABLES # TensorFlow会自动对上面集…
在程序中定义变量很简单,只要定义一个变量名就可以,但是tensorflow有点类似在另外一个世界,因此需要通过当前的世界中跟tensorlfow的世界中进行通讯,来告诉tensorflow的世界中定义了一个变量,这个通讯的空间就是tf类,看个例子就应该能明白: import tensorflow as tf state = tf.Variable(0) print(state.name) 这里定义了一个tensorflow变量,并且设置了一个初始值0,在tensorflow世界中每个变量也有其相…
tensorflow变量: 1.神经网络中的参数权重,偏置等可以作为张量保存到tensorflow的变量中 2.tensorflow变量必须被初始化 3.可被保存到文件中,下次使用重新加载即可 tensorflow说明: tensorflow是一张运算图,用tf.Session运行这张图就得到输出结果 其中这张运算图由节点和带箭头的线组成: 节点表示运算操作,例如+,-等 带箭头的线表示执行运算操作的数据 上图,add表示加法操作,俩个箭头线表示两个相加的数据…
import tensorflow as tf x=tf.Variable([1,2]) a=tf.constant([3,3]) sub=tf.subtract(x,a) #增加一个减法op add=tf.add(x,sub) #增加一个加法op #注意变量再使用之前要再sess中做初始化,但是下边这种初始化方法不会指定变量的初始化顺序 init=tf.global_variables_initializer() with tf.Session() as sess: sess.run(init…
https://github.com/chenghuige/tensorflow-exp/blob/master/examples/sparse-tensor-classification/ tensorflow-exp/example/sparse-tensor-classification/train-validate.py 当你需要train的过程中validate的时候,如果用placeholder来接收输入数据 那么一个compute graph可以完成这个任务.如果你用的是TFRec…
在TensorFlow中变量的作用是保存和更新神经网络中的参数,需要给变量指定初始值,如下声明一个2x3矩阵变量 weights =tf.Variable(tf.random_normal([2,3], stddev=1)) 在这段代码中tf.random_normal([2,3], stddev=1)会产生一个2x3的矩阵,矩阵中的元素是均值为0,标准差为2的随机数.tf.random_normal()可以通过参数mean来指定平均值,不指定默认0. 函数名称 随机数分布 主要参数 tf.ra…
举例说明 TensorFlow中的变量一般就是模型的参数.当模型复杂的时候共享变量会无比复杂. 官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变量,但是我们希望所有图片都共享同一过滤器变量,一共有4个变量:conv1_weights,conv1_biases,conv2_weights, and conv2_biases. 通常的做法是将这些变量设置为全局变量.但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要…
上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制. 变量共享主要涉及到两个函数: tf.get_variab…
import tensorflow as tf # 在不同的变量域中调用conv_relu,并且声明我们想创建新的变量 def my_image_filter(input_images): with tf.variable_scope("conv1"): # Variables created here will be named "conv1/weights" ,"conv1/biases" relu1 = conv_relu(input_im…
# sharing variables # Tensorflow supports two ways of sharing variables # 1.Explicitly passing tf.Variable objects around # 2.Implicitly wrapping tf.Variable objects within tf.variable_scope objects # For example , let's write a function to create a…