1. 摘要 CNN 中的特征包含着不同类型的信息,它们对图像重建的贡献也不一样.然而,现在的大多数 CNN 模型却缺少对不同信息的辨别能力,因此也就限制了模型的表示容量. 另一方面,随着网络的加深,来自前面层的长期信息很容易在后面的层被削弱甚至消失,这显然不利于图像的超分辨. 作者提出了一个通道和空间特征调制(CSFM)网络,其中一系列特征调制记忆(FMM)模块级联在一起来将低分辨率特征转化为高信息量的特征.而在每个 FMM 内部,则集成了许多通道和空间注意力残差块(CSAR)以及一个用来保留长…
目录 故事背景 空域特征转换 超分辨率网络 发表在2018年CVPR. 摘要 Despite that convolutional neural networks (CNN) have recently demonstrated high-quality reconstruction for single-image super-resolution (SR), recovering natural and realistic texture remains a challenging prob…
Parallel Feature Pyramid Network for Object Detection ECCV2018 总结: 文章借鉴了SPP的思想并通过MSCA(multi-scale context aggregation)模块进行特征融合从而提出PFPNet(Parallel Feature Pyramid Network)算法来提升目标检测的效果. 1.使用spp模块通过扩大网络宽度而不是增加深度来生成金字塔形特征图 2.提出msca模块,有效地结合了大不相同规模的上下文信息 3…
论文题目<Hyperspectral Image Classification With Deep Feature Fusion Network> 论文作者:Weiwei Song, Shutao Li, Leyuan Fang,Ting Lu 论文发表年份:2018 网络简称:DFFN 发表期刊:IEEE Transactions on Geoscience and Remote Sensing  一.本文提出的挑战 1.由于光谱混合和光谱特征空间变异性的存在,HSIs通常具有非常复杂的空间…
ASEGAN:WGAN音频超分辨率 这篇文章并不具有权威性,因为没有发表,说不定是外国的某个大学的毕业设计,或者课程结束后的作业.或者实验报告. CS230: Deep Learning, Spring 2018, Stanford University, CA. (LateX template borrowed from NIPS 2017.) 作者:Jonathan Gomes-Selman, Arjun Sawhney, WoodyWang 摘要 本文提出使用Wasserstein(沃瑟斯…
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/10874993.html 论文作者:Sefik Emre Eskimez , Kazuhito Koishida 摘要 语音超分辨率(SSR)或语音带宽扩展的目标是由给定的低分辨率语音信号生成缺失的高频分量.它有提高电信质量的潜力.我们提出了一种新的SSR方法,该方法利用生成对抗网络(GANs)和正则化(regularization)方法来稳定GAN训练.生成器网络是有一维卷积核的卷积自编码器,…
概要 近年来,深度卷积神经网络(CNNs)在单一图像超分辨率(SISR)中进行了广泛的探索,并获得了卓越的性能.但是,大多数现有的基于CNN的SISR方法主要聚焦于更宽或更深的体系结构设计上,而忽略了挖掘层间特征的内在相关性,从而阻碍了CNN的表示能力.为了解决这一问题,在本文中提出了一个二阶注意力网络(SAN),用于更强大的特征表达和特征相关性学习.特别地,开发了一种新颖的可训练的二阶通道注意力(SOCA)模块,以通过使用二阶特征统计量进行更具区分度的表示来自适应地重缩放通道级别的特征.此外,…
http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1   Deep Compositional Captioning: Descr…
CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - 10:05AM. These papers will also be presented at the following poster session 1 Deep Compositional Captioning: Describing Novel Object Categories Witho…
基于COCO数据集验证的目标检测算法天梯排行榜 AP50 Rank Model box AP AP50 Paper Code Result Year Tags 1 SwinV2-G (HTC++) 63.1 Swin Transformer V2: Scaling Up Capacity and Resolution Link 2021 Swin-Transformer 2 Florence-CoSwin-H 62.4 Florence: A New Foundation Model for C…
CVPR2015 Papers震撼来袭! CVPR 2015的文章可以下载了,如果链接无法下载,可以在Google上通过搜索paper名字下载(友情提示:可以使用filetype:pdf命令). Going Deeper With ConvolutionsChristian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke…
From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am-8:40am Ballrooms A,B,C Rooms 302,304,306 Opening Remarks from Conference Chairs The opening remarks will be made from Ballrooms A,B,C, but a live vid…
DRCN http://www.drcn.org/   The International Workshop on Design of Reliable Communication Networks (DRCN) 2016年10月转: image super-resolution分类_DavFrank_新浪博客 http://blog.sina.com.cn/s/blog_82a927880102wbpx.html 查DRCN时逛到的一个帖子,对最近的超分辨率问题整理得很全. 转了一部分,但是从…
目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里转了两篇比较好的博客作为备忘. 1. 博客一 这篇论文是CVPR2017年的文章,采用特征金字塔做目标检测,有许多亮点,特来分享. 论文:feature pyramid networks for object detection 论文链接:https://arxiv.org/abs/1612.031…
前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Mask R-CNN 论文链接:论文链接 论文代码:Facebook代码链接:Tensorflow版本代码链接:] to compute the exact values of the input features at four regularly sampled locations in each…
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artificial Intelligence) 原文地址:SCNN 论文提出了一个新颖网络Spatial CNN,在图片的行和列上做信息传递.可以有效的识别强先验结构的目标.论文提出了一个大型的车道检测数据集,用于进一步推动自动驾驶发展. 代码: 官方-torch Abstract 现今的CNN模型通常是由卷积…
原文地址:http://hi.baidu.com/steeeeps/item/165fbc15475e94741009b5b3 非常感谢作者. 以前学习几何网络时,对效用网络流向进行了总结,原理与效果图见:http://hi.baidu.com/llinkin_park/blog/item/7f18fff9e87cf075034f56d8.html 但是代码一直没贴出来,因为网上有很多类似的代码,这几天一个网友想交流一下,自己也好久没看这个代码了,在这里把显示流向的代码贴出来分享下,如果你有更好…
Convolutional Neural Networks are great: they recognize things, places and people in your personal photos, signs, people and lights in self-driving cars, crops, forests and traffic in aerial imagery, various anomalies in medical images and all kinds…
http://xmodulo.com/networking-between-docker-containers.html How to set up networking between Docker containers Last updated on March 20, 2015 Authored by Dan Nanni 3 Comments As you may be aware, Docker container technology has emerged as a viable l…
https://vitalab.github.io/deep-learning/2017/04/04/feature-pyramid-network.html Feature Pyramid Networks for Object Detection Reviewed on Apr 4, 2017 by Frédéric Branchaud-Charron • https://arxiv.org/pdf/1612.03144.pdf Reference : T. Lin, P. Dollár,…
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Zhe Liu, Lu Li, Hadi Salman, Yuqing He Abstract— Place recognition is one of the major challenges for the LiDAR-based effective localization and mappin…
多尺度的object detection算法:FPN(feature pyramid networks). 原来多数的object detection算法都是只采用顶层特征做预测,但我们知道低层的特征语义信息比较少,但是目标位置准确:高层的特征语义信息比较丰富,但是目标位置比较粗略.另外虽然也有些算法采用多尺度特征融合的方式,但是一般是采用融合后的特征做预测,而本文不一样的地方在于预测是在不同特征层独立进行的. 下图FIg1展示了4种利用特征的形式: (a)图像金字塔,即将图像做成不同的scal…
Feature Pyramid Networks for Object Detection 特征金字塔网络用于目标检测 论文地址:https://arxiv.org/pdf/1612.03144.pdf 论文背景: 特征金字塔是用于检测不同尺寸物体的识别系统的基本组成部分.但是最近的深度学习目标检测方法避免了使用金字塔表示,部分原因在于它是计算和内存密集型的.Fast R-CNN和Faster R-CNN主张使用单一尺度计算特征,因为它提供了精确度与速度之间良好的折中,然而多尺度检测仍然表现更好…
A network authentication method is to be implemented using a network authentication device and a user end for authenticating the user end. The network authentication method includes the steps of: configuring the network authentication device to store…
Mask_RCNN-2.0 网页链接:https://github.com/matterport/Mask_RCNN/releases/tag/v2.0 Mask_RCNN-master(matterport / Mask_RCNN)网页链接:https://github.com/matterport/Mask_RCNN 操作步骤 本文假设运行环境满足基本需求:Python = 3.6.8, tensorflow-gpu = 1.12.0, keras = 2.0.8, matplotlib =…
environment Red Hat Enterprise Linux 5.4 or later Red Hat Enterprise Linux 6.0 or later KVM virtual machines question How do I configure a bridged network interface for KVM using Red Hat Enterprise Linux 5.4 or later? On RHEL 6, what is the recommend…
提起Channel,JDK的NIO类库的重要组成部分,就是提供了java.nio.SocketChannel和java.nio.ServerSocketChannel,用于非阻塞的I/O操作. 类似于NIO的Channel,Netty提供了自己的Channel和其子类实现,用于异步I/O操作和其他相关的操作.Unsafe是个内部接口,聚合在Channel中协助进行网络读写相关的操作,因为它的设计初衷就是Channel的内部辅助类,不应该被Netty框架的上层使用者调用,所以被命名为Unsafe.…
Feature engineering is an informal topic, but one that is absolutely known and agreed to be key to success in applied machine learning. In creating this guide I went wide and deep and synthesized all of the material I could. You will discover what fe…
来源于stack overflow,其实就是计算每个特征对于降低特征不纯度的贡献了多少,降低越多的,说明feature越重要 I'll use the sklearn code, as it is generally much cleaner than the R code. Here's the implementation of the feature_importances property of the GradientBoostingClassifier (I removed some…
CNN 大概是目前 CV 界最火爆的一款模型了,堪比当年的 SVM.从 2012 年到现在,CNN 已经广泛应用于CV的各个领域,从最初的 classification,到现在的semantic segmentation, object detection,instance segmentation,super resolution 甚至 optical flow 都能看的其身影.还真是,无所不能. 虽然 CNN 的应用可以说是遍地开花,但是细究起来,可以看到 CNN 的基本模型还是万变不离其宗…