给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7. 输入格式 输入仅一行,包含两个整数n, k. 输出格式 输出仅一行,即j(n, k). 数据范围 1≤n,k≤1091≤n,k≤109 输入样例: 5 3 输出样例: 7 题意:求题目所给的等式思路:直接O(n)遍历肯定不行,我们…
1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 6117  Solved: 2949[Submit][Status][Discuss] Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 m…
\(\sum_{i = 1}^{n} k \bmod i = n * k - \sum_{i = 1}^{n} \lfloor k / i \rfloor * i\) 显然,\(\lfloor k / i \rfloor\) 是最棘手的,我们要想办法简化计算. 证明单调性 观察 \(\lfloor k / i \rfloor\),显然随着 \(i\) 的增大,这个式子是越来越小的. 又因为有向下取整符号,所以该式子取值只能是整数. 若我们设函数 \(f(x) = \lfloor k / x \r…
Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目要求: \[\sum_{i=1}^nx \% i = \] \[\sum_{i=1}^nk - i * [\dfrac{k}{i}] = \] \[n * k - \sum_{i=1}^n i * [\dfrac{k}{i}]\] 后面这一部分可以用整除分块解决. 需要注意的是.\(k\%i(i >…
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数. 例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3. 给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果…
Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 Input 输入仅一行,包含两个整数n, k. 1<=n ,k<=10^9 Output 输出仅一行,即j(n, k). Sample Input 5 3 Sample…
题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值其中k mod i表示k除以i的余数.例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7 题解k%i=k-\(\left\lfloor\frac{k}{i}\right\rfloor\) \(*i\),然后\(\left\lfloor\frac{k}{i}\right\rfloor…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_{i=1}^{n}k-\left \lfloor k/i \right \rfloor *i \) 然后数论分块做即可,注意 \( n>k \) 时右边界的取值. 代码如下: #include<cstdio> #include<cstring> #include<algor…
题意 求 $\sum _{i=1}^n k \ mod \ i$($1\leq n,k\leq 10^9$). 分析 数据范围这么大 $O(n)$ 的复杂度也挺不住啊 根据取模的意义,$k \ mod \ i = k - \left \lfloor \frac{k}{i} \right \rfloor * i$, 因此可以用整除分块,注意分类讨论 $k$ 与 $n$ 的关系. #include<bits/stdc++.h> using namespace std; typedef long l…
题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k-i\lfloor\frac{k}{i}\rfloor)=\displaystyle \sum_{i=1}^nk-\sum_{i=1}^ni\lfloor\frac{k}{i}\rfloor$ 而k/i在一定范围内是不变的,所以分块求等差数列就可以了 代码: /***********************…