摘要: 数据挖掘.机器学习和推荐系统中的评测指标—准确率(Precision).召回率(Recall).F值(F-Measure)简介. 引言: 在机器学习.数据挖掘.推荐系统完成建模之后,需要对模型的效果做评价. 业内目前常常采用的评价指标有准确率(Precision).召回率(Recall).F值(F-Measure)等,下图是不同机器学习算法的评价指标.下文讲对其中某些指标做简要介绍. 本文针对二元分类器! 本文针对二元分类器!! 本文针对二元分类器!!! 对分类的分类器的评价指标将在以后…
评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. 准确率 准确率是最好理解的评价指标,它是一个比值: \[ 准确率 = \cfrac{算法分类正确的数据个数}{输入算法的数据的个数} \] 但是使用准确率评价算法有一个问题,就是在数据的类别不均衡,特别是有极偏的数据存在的情况下,准确率这个评价指标是不能客观评价算法的优劣的.例如下面这个例子: 我们…
sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn import datasetsd=datasets.load_digits()x=d.datay=d.target.copy()print(len(y))y[d.target==9]=1y[d.target!=9]=0print(y)print(pd.value_counts…
OvO与OvR 前文书道,逻辑回归只能解决二分类问题,不过,可以对其进行改进,使其同样可以用于多分类问题,其改造方式可以对多种算法(几乎全部二分类算法)进行改造,其有两种,简写为OvO与OvR OvR one vs rest,即一对剩余所有,如字面意思,有的时候称为OvA,one vs all 假设有四个类别,对于这种分类问题,可以将一个类别选中以后,使其他三个类别合并为一个类别,即其它类别,这样就换变为二分类问题了,这种可以形成四种情况,选择预测概率高的,也就是说,有n个类别就进行n次分类,然…
为了能够更好的评价IR系统的性能,IR有一套完整的评价体系,通过评价体系可以了解不同信息系统的优劣,不同检索模型的特点,不同因素对信息检索的影响,从而对信息检索进一步优化. 由于IR的目标是在较短时间内返回较全面和准确的信息,所以信息检索的评价指标通常从三个方面考虑:效率.效果和其他如数据规模. 下面简单介绍几种常用的信息检索评价指标: 1.准确率与召回率(Precision & Recall)        精度和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精…
AUC是指:从一堆样本中随机抽一个,抽到正样本的概率比抽到负样本的概率大的可能性! AUC是一个模型评价指标,只能用于二分类模型的评价,对于二分类模型,还有很多其他评价指标,比如logloss,accuracy,precision.如果你经常关注数据挖掘比赛,比如kaggle,那你会发现AUC和logloss基本是最常见的模型评价指标.为什么AUC和logloss比accuracy更常用呢?因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算accuracy,需要先把概率转化成类别,这…
感知机是简单的线性分类模型 ,是二分类模型.其间用到随机梯度下降方法进行权值更新.参考他人代码,用matlab实现总结下. 权值求解过程通过Perceptron.m函数完成 function W = Perceptron(X,y,learnRate,maxStep) % Perceptron.m % Perception Learning Algorithm(感知机) % X一行为一个样本,y的取值{-1,+1} % learnRate:学习率 % maxStep:最大迭代次数 [n,m] =…
下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量.其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率:召回率是指检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率. 一般来说,Precision就是检索出来的条目(比如:文档.网页等)有多少是准确的,Recall就是所有准确的条目有多少被检索出来了. 正确率.召回…
转自http://bookshadow.com/weblog/2014/06/10/precision-recall-f-measure/ 1,准确率和召回率是广泛应用于信息检索和统计学分类领域的两个度量值,来评价结果的质量. 其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率: 召回率:检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率: 一般来说 precision是检索出来的条目(文档.网页)有多少是准确的: recall就是所有准确的条…