在CNN(1)中,我们用到下图来说明卷积之后feature maps尺寸和深度的变化.这一节中,我们讨论feature map size, padding and stride. 首先,在Layer1中,输入是32x32的图片,而卷积之后为28x28,试问filter的size(no padding)? (答案是5x5). 如果没答上来,请看下图: I是一张7x7的图片,filter是3x3的,I*K生成的feature map是5x5的.所以我们推出feature map size公式为: 其…