0. 均匀分布期望的最大似然估计 首先我们来看,如何通过最大似然估计的形式估计均匀分布的期望.均匀分布的概率密度函数为:f(x|θ)=1θ,0≤x≤θ.不失一般性地,将 x1,x2,-,xn 排序为顺序统计量:x(1)≤x(2)≤⋯≤x(n).则根据似然函数定义,在此样本集合上的似然函数为: L(θ|x)=∏i=1n1θ=θ−n(∗) 对 x(1)≥0,x(n)≤θ,否则为 0.然后求其对数形式关于 θ 的导数: dlnL(θ|x)dθ=−nθ<0. 导数小于 0,因此可以说 L(x|θ) 是单…
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,…
最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…
https://zhuanlan.zhihu.com/p/32480810 TLDR (or the take away) 频率学派 - Frequentist - Maximum Likelihood Estimation (MLE,最大似然估计) 贝叶斯学派 - Bayesian - Maximum A Posteriori (MAP,最大后验估计) 概述 有时候和别人聊天,对方会说自己有很多机器学习经验,深入一聊发现,对方竟然对MLE和MAP一知半解,至少在我看来,这位同学的机器学习基础并…
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道均值和方差:或者对于逻辑回归,我们假定样本是服从二项分布,但是不知道均值,逻辑回归公式得到的是因变量y的概率P = g(x), x为自变量,通过逻辑函数得到一个概率值,y对应离散值为0或者1,Y服从二项分布,误差项服从二项分布,而非高斯分布,所以不能用最小二乘进行模型参数估计,可以用极大似然估计来进…
最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:"模型已定,参数未知".简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所…
最大似然估计 似然与概率 在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)和概率(Probability)是两个不同的概念.概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最后是哪一面朝上,但是根据硬币的性质我们可以推测任何一面朝上的可能性均为50%,这个概率只有在抛硬币之前才是有意义的,抛完硬币后的结果便是确定的:而似然刚好相反,是在确定的结果下去推测产…
目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE)-贝叶斯公式 总结:先验概率 后验概率以及似然函数的关系 机器学习基础 1. 概率和统计 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 顾名思义: 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方…