pytorch rnn】的更多相关文章

import torch import torch.nn as nn import numpy as np import torch.optim as optim class RNN(nn.Module): def __init__(self,input_dim , hidden_dim , out_dim): super(RNN,self).__init__() self.linear_1 = nn.Linear(input_dim , hidden_dim) self.linear_2 =…
温习一下,写着玩. import torch import torch.nn as nn import numpy as np import torch.optim as optim class RNN(nn.Module): def __init__(self,input_dim , hidden_dim): super(RNN,self).__init__() self._rnn = nn.RNN(input_size = input_dim , hidden_size= hidden_di…
本文中的RNN泛指LSTM,GRU等等 CNN中和RNN中batchSize的默认位置是不同的. CNN中:batchsize的位置是position 0. RNN中:batchsize的位置是position 1. 在RNN中输入数据格式: 对于最简单的RNN,我们可以使用两种方式来调用,torch.nn.RNNCell(),它只接受序列中的单步输入,必须显式的传入隐藏状态.torch.nn.RNN()可以接受一个序列的输入,默认会传入一个全0的隐藏状态,也可以自己申明隐藏状态传入. 输入大小…
论文通过实现RNN来完成了文本分类. 论文地址:88888888 模型结构图: 原理自行参考论文,code and comment: # -*- coding: utf-8 -*- # @time : 2019/11/9 15:12 import numpy as np import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable dtype = torch.F…
classtorch.nn.RNN(*args, **kwargs) input_size – The number of expected features in the input x hidden_size – The number of features in the hidden state h num_layers – Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs…
前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译 Effective Approaches to Attention-based Neural Machine Translation 简介 Attention介绍 在翻译的时候,选择性的选择一些重要信息.详情看这篇文章 . 本着简单和有效的原则,本论文提出了两种注意力机制. Global 每次翻译时,都选择关注所有的单词.和Bahdanau的方式 有点相似,但是更简单些.简单原理介绍. Local 每次翻译时,只选择关注一…
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch…
混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在一个基于深度学习项目的研发阶段, 使用像PyTorch这样即时eager.命令式的界面进行交互能带来很大便利.这使用户能够在使用Python数据结构.控制流操作.打印语句和调试实用程序时,通过熟悉的.惯用的Python脚本编写. 尽管即时性界面,对于研究和试验应用程序是一个有用的工具,但是对于生产环…
1. 概况 1.1 任务 口语理解(Spoken Language Understanding, SLU)作为语音识别与自然语言处理之间的一个新兴领域,其目的是为了让计算机从用户的讲话中理解他们的意图.SLU是口语对话系统(Spoken Dialog Systems)的一个非常关键的环节.下图展示了口语对话系统的主要流程. SLU主要通过如下三个子任务来理解用户的语言: 领域识别(Domain Detection) 用户意图检测(User Intent Determination) 语义槽填充(…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 我们仍然使用手工搭建的包含几个线性层的小型RNN.与之…