Python并发编程-线程锁】的更多相关文章

互斥锁-Lock #多线程中虽然有GIL,但是还是有可能产生数据不安全,故还需加锁 from threading import Lock, Thread #互斥锁 import time def eat1(lock): global n lock.acquire() temp =n time.sleep(0.2) n = temp - 1 lock.release() if __name__ == '__main__': n = 10 t_lst = [] lock = Lock() for i…
Python并发编程-线程同步(线程安全) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 线程同步,线程间协调,通过某种技术,让一个线程访问某些数据时,其它线程不能访问这些数据,直到该线程完成对数据的操作.   一.Event 1>.Event的常用方法 Event事件,是线程通信机制中最简单的实现,使用一个内部的标记flag,通过flage的True或False的变化来进行操作. 常用方法如下: set(): 标记为True. clear(): 标记设置为Flase. is…
什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: from multiprocessing import Process def f1(n): print(n,'号线程') if __name__ == '__main__': t1 = Thread(target=f1,args=(1,)) t1.start() print('主线程') 二 from threading import Thread cla…
Python作为一种解释型语言,由于使用了全局解释锁(GIL)的原因,其代码不能同时在多核CPU上并发的运行.这也导致在Python中使用多线程编程并不能实现并发,我们得使用其他的方法在Python中实现并发编程. 一.全局解释锁(GIL) Python中不能通过使用多线程实现并发编程主要是因为全局解释锁的机制,所以首先解释一下全局解释锁的概念. 首先,我们知道C++和Java是编译型语言,而Python则是一种解释型语言.对于Python程序来说,它是直接被输入到解释器中直接运行的.解释器在程…
一:为什么需要线程锁 一个进程下可以启动多个线程,多个线程共享父进程的内存空间,也就意味着每个线程可以访问同一份数据,此时,如果2个线程同时要修改同一份数据,会出现什么状况? 很简单,假设你有A,B两个线程,此时都 要对num 进行减1操作, 由于2个线程是并发同时运行的,所以2个线程很有可能同时拿走了num=100这个初始变量交给cpu去运算,当A线程去处完的结果是99,但此时B线程运算完的结果也是99,两个线程同时CPU运算的结果再赋值给num变量后,结果就都是99.那怎么办呢? 很简单,每…
1.线程 1.进程与线程 进程有很多优点,它提供了多道编程,让我们感觉我们每个人都拥有自己的CPU和其他资源,可以提高计算机的利用率.很多人就不理解了,既然进程这么优秀,为什么还要线程呢?其实,仔细观察就会发现进程还是有很多缺陷的,主要体现在两点上: 进程只能在一个时间干一件事,如果想同时干两件事或多件事,进程就无能为力了. 进程在执行的过程中如果阻塞,例如等待输入,整个进程就会挂起,即使进程中有些工作不依赖于输入的数据,也将无法执行. 如果这两个缺点理解比较困难的话,举个现实的例子也许你就清楚…
一.进程:1.定义:进程最小的资源单位,本质就是一个程序在一个数据集上的一次动态执行(运行)的过程2.组成:进程一般由程序,数据集,进程控制三部分组成:(1)程序:用来描述进程要完成哪些功能以及如何完成(2)数据集:是程序在执行过程中所需要使用的一切资源(3)进程控制块:用来记录进程外部特征,描述进程的执行变化过程,系统可以利用它来控制和管理进程,它是系统感知进程存在的唯一标志.3.进程的作用:是想完成多任务并发,进程之间的内存地址是相互独立的二.线程:1.定义:最小的执行单位,线程的出现是为了…
from concurrent.futures import ThreadPoolExecutor import time def func(n): time.sleep(2) print(n) return n*n t_pool = ThreadPoolExecutor(max_workers=20) #max_workers一般不超过CPU*5,创建线程池 t_lst = [] for i in range(20): t = t_pool.submit(func,i) #提交多线程认为 t_…
from threading import Thread import time def func(n): #子线程完成的 time.sleep(1) print(n) #多线程示例 for i in range(10): t = Thread(target=func, args=(i,)) #func的子线程注册到主线程 t.start() 使用面向对象的方式开启新的线程 from threading import Thread import time class MyThread(Threa…
Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 1. 死锁现象 2. 递归锁 3. 信号量 4. GIL全局解释器锁 1. 背景 2. 加锁的原因: 3. GIL与Lock锁的区别 4. 为什么GIL保证不了自己数据的安全? 5. 验证计算密集型.IO密集型的效率 6. 多线程实现socket通信 7. 进程池,线程…