当训练数据量较小时,采用直接读取文件的方式,当训练数据量非常大时,直接读取文件的方式太耗内存,这时应采用高效的读取方法,读取tfrecords文件,这其实是一种二进制文件.tensorflow为其内置了各种存储和读取的函数,方便调用. 不知道为啥,从tfrecords中读取数据用于训练时,收敛得更快,更平稳.上面两个图是使用tfrecords的准确率和loss值变化,下面是直接读取文件的准确率和loss值变化. 1 生成记录样本的记录文件 root_dir = os.getcwd() def g…
在之前的TensorFlow学习笔记——图像识别与卷积神经网络(链接:请点击我)中了解了一下经典的卷积神经网络模型LeNet模型.那其实之前学习了别人的代码实现了LeNet网络对MNIST数据集的训练.而这篇文章是想自己完成LeNet网络来训练自己的数据集.LeNet主要用来进行手写字符的识别与分类,下面记录一下自己学习的过程. 我的学习步骤分为以下四步: 1,温习LeNet-5的网络层 2,使用LeNet-5训练MNIST数据集 3,使用LeNet-5训练TFRecord格式的MNIST数据集…
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fast-rcnn-train-another-dataset 这是我在github上修改的几个文件的链接,求星星啊,求星星啊(原谅我那么不要脸~~) 在之前两篇文章中我介绍了怎么编译Fast RCNN,和怎么修改Fast RCNN的读取数据接口,接下来我来说明一下怎么来训练网络和之后的检测过程 先给看一…
既然faster-rcnn原版发表时候是matlab版代码,那就用matlab版代码吧!不过遇到的坑挺多的,不知道python版会不会好一点. ======= update ========= 总体上包括这些步骤,请注意检查: 1 获取数据:(标准数据集/比赛数据/自行收集数据) 2 整理图片名和标注信息格式.指定训练集和测试集:(转voc格式,同时记得修改vocinit.m中类别信息:或者自己修改代码中读取数据的地方) 3 正确使用均值图像:手动算一个或用默认的减去128,别用错 4 选择网络…
[写在前面] 用Tensorflow(TF)已实现好的卷积神经网络(CNN)模型来训练自己的数据集,验证目前较成熟模型在不同数据集上的准确度,如Inception_V3, VGG16,Inception_resnet_v2等模型.本文验证Inception_resnet_v2基于菜场实拍数据的准确性,测试数据为芹菜.鸡毛菜.青菜,各类别样本约600张,多个菜场拍摄,不同数据源. 补充:自己当初的计划是用别人预训练好的模型来再训练自己的数据集已使可以完成新的分类任务,但必须要修改代码改网络结构,并…
目标检测算法SSD之训练自己的数据集 prerequesties 预备知识/前提条件 下载和配置了最新SSD代码 git clone https://github.com/weiliu89/caffe ~/work/ssd cd $_ git checkout ssd 编译caffe 下载必要的模型(包括prototxt和caffemodel): 运行了evaluation和webcam的例子,会提示caffe的import报错.添加pycaffe路径到PYTHONPATH环境变量,或者写一个_…
[引言] 最近在用可变卷积的rfcn 模型迁移训练自己的数据集, MSRA官方使用的MXNet框架 环境搭建及配置:http://www.cnblogs.com/andre-ma/p/8867031.html 一 参数修改: 1.1  ~/Deformable-ConvNets/experiments/rfcn/cfgs/resnet_v1_101_voc0712_rfcn_dcn_end2end_ohem.yaml  文件中修改两个参数 (yaml文件包含对应训练脚本的一切配置信息和超参数)…
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…
使用yolo3模型训练自己的数据集 本项目地址:https://github.com/Cw-zero/Retrain-yolo3 一.运行环境 1. Ubuntu16.04. 2. TensorFlow-gpu 1.4.0 或更高版本. 3. Keras 2.2.4 . 4. numpy 1.15.2(实测1.16.1会报错). 二.创建数据集 1. 使用VOC2007数据集的文件结构: 文件结构如下图,可以自己创建,也可以下载VOC2007数据集后删除文件内容. 注:数据集中没有 test.p…
cifar-10 每张图片的大小为 32×32,而 AlexNet 要求图片的输入是 224×224(也有说 227×227 的,这是 224×224 的图片进行大小为 2 的 zero padding 的结果),所以一种做法是将 cifar-10 数据集的图片 resize 到 224×224. 此时遇到的问题是,cifar-10 resize 到 224×224 时,32G 内存都将无法完全加载所有数据,在归一化那一步(即每个像素点除以 255)就将发生 OOM(out of memory)…