sklearn中的model_selection模块(1)】的更多相关文章

sklearn作为Python的强大机器学习包,model_selection模块是其重要的一个模块: 1.model_selection.cross_validation: (1)分数,和交叉验证分数 众所周知,每一个模型会得出一个score方法用于裁决模型在新的数据上拟合的质量.其值越大越好. from sklearn import datasets, svm digits = datasets.load_digits() X_digits = digits.data y_digits =…
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官网上给出的指标如下图所示: 1.2除了上图中的度量指标以外,你还可以自定义一些度量指标:通过sklearn.metrics.make_scorer()方法进行定义: make_scorer有两种典型的用法: 用法一:包装一些在metrics中已经存在的的方法,但是这种方法需要一些参数,例如fbeta…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
后续补代码 sklearn.model_selection模块的几个方法参数…
环境:scikit-learn 0.18 , python3 from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV 报出如下警告: from sklearn.grid_search import GridSearchCV /usr/lib/python3.4/site-packages/sklearn/cross_validation.py:44: De…
1. 交叉验证概述 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 最先我们用训练准确度(用全部数据进行训练和测试)来衡量模型的表现,这种方法会导致模型过拟合:为了解决这一问题,我们将所有数据分成训练集和测试集两部分,我们用训练集进行模型训练,得到的模型再用测试集来衡量模型的预测表现能力,这种度量方式叫测试准确度,这种方式可以有效避免过拟合. 测试准确度的一个缺点是其样…
机器学习sklearn中的检查验证模块: 原版本导包: from sklearn.cross_validation import cross_val_score 导包报错: 模块继承在cross_validation中,但现在的cross_validation模块已经取消了,继承到了model_selection中 现版本的导包: from sklearn.cross_validation import cross_val_score…
在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA降维,然后使用logistic regression进行分类,如果不使用pipeline,那么我们将分别保存两部分内容,一部分是PCA模型,一部分是logistic regression模型,稍微有点不方便.(当然,这么做也完全可以,使用Pipeline只是提供个方便罢了) 1.Pipeline中的…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 1. cross_val_score对数据集进行指定次数的交叉验证并为每次验证效果评测其中,sco…
这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 先导入需要的库及数据集In [1]: import numpy as n…
投票法(voting)是集成学习里面针对分类问题的一种结合策略.基本思想是选择所有机器学习算法当中输出最多的那个类. 分类的机器学习算法输出有两种类型:一种是直接输出类标签,另外一种是输出类概率,使用前者进行投票叫做硬投票(Majority/Hard voting),使用后者进行分类叫做软投票(Soft voting). sklearn中的VotingClassifier是投票法的实现. 硬投票 硬投票是选择算法输出最多的标签,如果标签数量相等,那么按照升序的次序进行选择.下面是一个例子: fr…
一. sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘. from sklearn.externals import joblib #lr是一个LogisticRegression模型 joblib.dump(lr, 'lr.model') lr = joblib.load('lr.model') 链接:https://www.zhihu.com/question/27187105/answer/55895472 二.pickle >>> from sklearn…
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常常需要对原始变量进行一系列的预处理及筛选,剔除掉冗杂无用的成分,得到较为满意的训练集,才会继续我们的学习任务,这就是我们常说的特征选取(feature selection).本篇就将对常见的特征选择方法的思想及Python的实现进行介绍: 二.方法综述 2.1 去除方差较小的变量 这种方法针对离散型…
学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学习的一个非常好用的库,也是被广大学习机器学习们的童鞋们所喜爱的,那么一个被人们喜爱的算法和一个被人们喜爱的库结合到一起会是什么样子的呢,下面就是在Sklearn库中的分类决策树的函数以及所包含的参数. classsklearn.tree.DecisionTreeClassifier(criterio…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
1.聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇).这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布. 2.KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类.簇就是聚类的结果表现.簇中所有数据的均值通常被称为这个簇的“质心”(centroids).在一个二维平面中,一簇数据点的质心的横坐标就是这一簇数据点的横坐标的均值,质心的纵坐标就是这…
1.集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常广泛.生活中其实也普遍存在集成学习的方法,比如买东西找不同的人进行推荐,病情诊断进行多专家会诊等,考虑各方面的意见进行最终的综合的决策,这样得到的结果可能会更加的全面和准确.另外,sklearn中也提供了集成学习的接口voting classifier. sklearn中具体调用集成学习方法的具体代码如下:…
sklearn中实现多分类任务(OVR和OVO) 1.OVR和OVO是针对一些二分类算法(比如典型的逻辑回归算法)来实现多分类任务的两种最为常用的方式,sklearn中专门有其调用的函数,其调用过程如下所示: #sklearn中对于所有的二分类算法提供了统一的OVR和OVO的分类器函数,可以方便调用实现所有二分类算法的多分类实现from sklearn.multiclass import OneVsOneClassifier(OVR)from sklearn.multiclass import…
sklearn中调用PCA算法 PCA算法是一种数据降维的方法,它可以对于数据进行维度降低,实现提高数据计算和训练的效率,而不丢失数据的重要信息,其sklearn中调用PCA算法的具体操作和代码如下所示: #sklearn中调用PCA函数进行相关的训练和计算(自定义数据)import numpy as npimport matplotlib.pyplot as pltx=np.empty((100,2))x[:,0]=np.random.uniform(0.0,100.0,size=100)x[…
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小.另外,在运用随机梯度下降法之前需要利用sklearn的StandardScaler将数据进行标准化. #sklearn中实现随机梯度下降多元线性回归 #1-1导入相应的数据模块import numpy as npimport matplotlib.…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提到了,特征选择的目的是通过降维来降低算法的计算成本……这些语言都很正常地被我用来使用,直到有一天,一个小伙伴问了我,”维度“到底是什么? 对于数组和Series来说,维度就是功能shape返回的结果,shape中返回了几个数字,就是几维.索引以外的数据,不分行列的叫一维(此时shape返回唯一的维度…
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断.也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小 数据预处理的目的:让数据适应模型,匹配模型的需求 3. 特征工程: 特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特…
在SKLearn中,StratifiedShuffleSplit 类实现了对数据集进行洗牌.分割的功能.但在今晚的实际使用中,发现该类及其方法split()仅能够对二分类样本有效. 一个简单的例子如下: 1 import numpy as np 2 from sklearn.model_selection import StratifiedShuffleSplit 3 4 l4 = np.array([[1,2],[3,4],[1,4],[3,5]]) 5 l5 = np.array([0,1,…
import matplotlib.pyplot as pltfrom sklearn.svm import SVCfrom sklearn.model_selection import StratifiedKFoldfrom sklearn.feature_selection import RFECVfrom sklearn.datasets import make_classificationfrom sklearn.tree import DecisionTreeClassifier 1.…
首先,请在AtmosphereJs上搜索有无相关的封装包.尽量采用已有的封装包,而不是自己封装. 有两种方法在项目中使用来自npm的模块. 封装为Meteor包并在项目中添加包.使用meteor create 包名 --package来创建包,并通过将包目录放置于项目的packages文件夹等方法向项目引入包.包中使用Npm.depends和Npm.require来引入npm模块.Meteor文档-包中引入Npm模块 使用meteorhacks:npm.meteorhacks:npm @ Atm…
Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniform random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <…