[SHOI 2017] 组合数问题】的更多相关文章

[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4870 [算法] 回顾组合数的定义 : C(N , M)表示将N个小球放入M个盒子里的方案数 我们发现题目要求的其实就是将nk个小球放入模k意义下于r个盒子中的方案数 不妨设Fi , j表示放了i个小球 , j个盒子(模k意义下)的方案数 有 : Fi , j = Fi - 1 , j - 1 + Fi - 1 , j 矩阵乘法即可 时间复杂度 : O(K ^ 3logNlogK)…
P3746 [六省联考2017]组合数问题 \(dp_{i,j}\)表示前\(i\)个物品,取的物品模\(k\)等于\(r\),则\(dp_{i,j}=dp_{i-1,(j-1+k)\%k}+dp_{i-1,j}\) \(dp_{i,0},dp_{i,1},dp_{i,2}.....dp_{i,k-1}\) \(\Longrightarrow\) \(dp_{i+1,0},dp_{i+1,1},dp_{i+1,2}.....dp_{i+1,k-1}\) 仔细想想,你能构造出矩阵的 #includ…
http://www.lydsy.com/JudgeOnline/problem.php?id=4870 80分暴力打的好爽 \(^o^)/~ 预处理杨辉三角 令m=n*k 要求满足m&x==x ,x<=m, x%k==r 的x的个数 结论:若n&m==m,则C(n,m)为奇数,否则为偶数 枚举m的子集,判断是否%k==r 时间复杂度:O(m的位子集个数),即O(2^(m的二进制中1的个数))极限是O(n*k) 杨辉三角第i行的和=2^i,即 那么用2^(nk) 减去 前面不用的C…
4870: [Shoi2017]组合数问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 748  Solved: 398[Submit][Status][Discuss] Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 Output 一行一个整数代表答案. Sample Input 2 10007…
题目描述 组合数 C_n^mCnm​ 表示的是从 n 个互不相同的物品中选出 m 个物品的方案数.举个例子,从 (1;2;3) 三个物品中选择两个物品可以有 (1;2);(1;3);(2;3) 这三种选择方法.根据组合数的定义,我们可以给出计算组合数 C_n^mCnm​ 的一般公式: C_n^m = \frac{n!}{m!(n-m)!}Cnm​=m!(n−m)!n!​ 其中 n! = 1 × 2 × · · · × n.(特别的,当 n = 0 时, n! = 1 ,当 m > n 时, C_…
题目是要我们求出如下柿子: \[\sum_{i=0}^{n}C_{nk}^{ik+r}\] 考虑k和r非常小,我们能不能从这里切入呢? 如果你注意到,所有组合数上方的数\(\%k==r\),那么是不是可以从\(DP\)开始呢? 跟据上述性质,我们可以得到暴力\(DP\): 考虑组合数的实际意义是在n个数中选出m个,那么我们可以设\(dp[i][j]\)表示在i个元素中,选了\(m\%k==j\)的方案数 转移就可以用\(dp[i][j] = dp[i - 1][j] + dp[i - 1][j…
正解:$dp$+矩乘+组合数学 解题报告: 传送门! 首先不难发现这个什么鬼无穷就是个纸老虎趴,,,最多在$\binom{n\cdot k+r}{n\cdot k}$的时候就已经是0了后面显然不用做下去了 但这样显然还是布星的鸭,,,毕竟$n$的数据范围在$1e9$直接做显然$GG$不说 考虑组合数的意义,这个式子就相当于是,$n\cdot k$个物品中选出$d$个,其中$d\ mod\ p=r$ 然后就考虑$dp$鸭,设$f_{i\ j}$:前$i$个数选出来膜p意义下为$j$个数的方案数 转…
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代码: #include<bits/stdc++.h> using namespace std; int n,p,k,r; ][]; ][]; ][]; void fast_pow(long long pw){ ) { ;i<k;i++) ;j<k;j++) g[i][j] = mat[…
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度可以描述的,这也是常识. 所以,此题要用到很多数论知识. 欧拉函数 定义 \(\varphi(n)\) 为 \([1,n]\) 中与 \(n\) 互质的正整数个数(包括 \(1\)). 通式 \(\displaystyle \varphi(n)=n\prod_{p|n}(1-{1\over p})\…
题目链接 Solution 矩阵优化 \(dp\). 题中给出的式子的意思就是: 求 nk 个物品中选出 mod k 为 r 的个数的物品的方案数. 考虑朴素 \(dp\) ,定义状态 \(f[i][j]\) 代表前 \(i\) 个物品选择 \(mod~k\) 为 \(j\) 的方案数. 那么转移方程也很简单 : \[f[i][j]_{j\in[1,i)}=f[i-1][j]+f[i-1][(j-1+k)mod~k]\] 但是很显然这样是 \(O(n^2k)\) . 考虑优化,发现对于每一项状态…
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4872 [算法] 首先发现 , 对于一个开关 , 按下2次和没按是等价的 , 因此每个开关最多按一次 考虑k = n的情况 , 只需简单倒序贪心即可 考虑随机的情况 , 由观察可知一个开关不能由多个开关组合得到 用fi表示i次将所有开关变关到(i - 1)次将所有开关变关的期望步数 有转移方程fi = i / n + (1 - i / n) * (1 + fi + 1 + fi) 将…
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=4873 [算法] 注意到题目中的限制条件可表述为 : 若选择区间[L , R] , 则必须选择区间[L + 1 , R]和[L , R - 1] , 这种依赖关系可以让我们联想到用最大权闭合子图解题 将每种代号建一个点 , 每个区间同样建一个点 首先将每个形如[i , i]的区间向其代号连边 然后将每个区间[L , R]所代表的点向[L + 1 , R]和[L , R - 1]连边…
题目:https://www.luogu.org/problemnew/show/P2822 阶乘太大,算不了: 但 k 只有 8 个质因子嘛,暴力60分: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; ]={,,,,,,,},num[],tp[],pk[],tp2[],tt[]; void gt(int x,i…
目录 2018.3.18 Test T1 BZOJ.4868.[六省联考2017]期末考试 T2 T3 BZOJ.4870.[六省联考2017]组合数问题(DP 矩阵快速幂) 总结 考试代码 T1 T2 T3 2018.3.18 Test 时间:3.5h 得分:太zz不写了(T3 60暴力分就我没看..) BZOJ总题目链接 LOJ总题目链接 T1 BZOJ.4868.[六省联考2017]期末考试 题目链接 /* 所有人都只与最大的bi有关系啊! 所以可以枚举bi,现在就是计算选在bi这天 所有…
(总计:共90题) 3.10~3.16:17题 3.17~3.23:6题 3.24~3.30:17题 3.31~4.6:21题 4.7~4.12:29题 ZJOI&&FJOI(6题) TJOI2016(6题) 六省联考2017(6题) SDOI2016(3题) HNOI2013(6题) CQOI2017(3题) 九省联考2018(3题) 3.10 [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树) [BZOJ4012][HNOI2015]开…
2018.11.21: 1.[BZOJ 4868][SHOI 2017] 从后往前枚举最后位置即可,如果$A<B$,用尽可能多的$A$替换$B$操作 Tip:很大的$C$可能爆$longlong$,注意特判掉与$C$相乘超过上限的数! 2.[BZOJ 4872][SHOI 2017] 首先每个灯最多按一次,接下来发现正确按取集合唯一,只不过顺序任意 设$dp[i]$表示从正确按取$i$个到$i-1$个的期望次数,则有: $dp[i]=\frac{i}{n}+\frac{n-i}{n}*(dp[i…
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 972  Solved: 581[Submit][Status][Discuss] Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数中,至少有一个数是质数.Alice想知道,有多少个序列满足她的要求. Input 一行三个数,n,m,p. 1<=n<=10^…
退役II次后做题记录 感觉没啥好更的,咕. atcoder1219 历史研究 回滚莫队. [六省联考2017]组合数问题 我是傻逼 按照组合意义等价于\(nk\)个物品,选的物品\(\mod k\) 余\(r\)的方案数,直接矩乘优化. [六省联考2017]相逢是问候 \(c^x\mod p=c^{x\mod \varphi(p)+\varphi(p)}\mod p(x>p)\) \(\varphi\)跳\(\log\)次就会跳到\(1\). 用欧拉定理时取膜这么写:int Mod(ll a,i…
Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 513    Accepted Submission(s): 319 Problem Description 車是中国象棋中的一种棋子,它能攻击同一行或同一列中没有其他棋子阻隔的棋子.一天,小度在棋盘上摆起了许多車……他想知道,在一共N×M个点的矩形棋盘中摆最多个数的車使其互不攻…
[题目描述] 输入格式: 一行一个正整数n 输出格式: 一行一个数f(n)对1000000007取余的值 [分析] 就是乱搞?? 就是问根到叶子有多少条路径嘛. 然后路径可以π.1.1.π...这样表示 枚举有多少个$π$,算出最后一个π前面最多多少个1[这样比较不容易算重复什么的],然后用组合数算一算. 有一个比较坑的地方就是比如3.2是-π是大于0但是是不能减的因为3.2已经小于4了. 然后就是假设枚举了i个π,最后一个π前面最多y个1. 就是 $\sum_{j=0}^{y} C_{i+j-…
[LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ,其逆序对数即满足 i<j 且 pi>pj 的二元组 (i,j)的数量. 输入格式 一行两个整数 n,k. 输出格式 一行,表示答案. 样例输入 7 12 样例输出 531 数据范围与提示 对于 20% 的数据,n,k≤20:对于 40% 的数据,n,k≤100:对于 60% 的数据,n,k≤50…
http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b 重复这样的操作m次,每次都是从上次求出的序列a得到一个新序列b 给定初始的序列,求重复m次操作后得到的序列 [方法一] 假定n=5,我们模拟一次可以发现,经过m次操作后a1在b1......bn中出现的次数为: m=0: 1 0 0 0 0 m=2: 1 2 3 4 5 m=3: 1 3 6 10…
题解: 令$S(i)={i+1,i+2,...,i<<1}$,f(i,k)表示S(i)中在二进制下恰好有k个1的数的个数 那么我们有$f(i,k)=\sum_{x=1}^{min(k,p)}\dbinom{a_x+1}{k-x+1}-\dbinom{a_x}{k-x+1}$ $a_x$表示i在二进制下第x高的1所在的2的幂次,p是i在二进制下1的个数 为什么呢?我们设g(i,k)表示在小于等于i的数中在二进制下1的个数等于k的数的个数,那么我们有f(i,k)=g(i<<1,k)-g…
题目链接 题目大意:求$(\sum\limits_{i=0}^n C_{nk}^{ik+r})\ mod \ p$的值. --------------------- 讲真,一开始看到这个题我都没往DP方面想,以为是什么大力推式子的数学题. 设$f_{i,j}$表示考虑前$i$个物品,选出的物品$mod \ k=j$的方案数.最后输出$f_{n,r}$. 易得转移方程: $f_{i,j}=f_{i-1,j}+f_{i-1,j-1}$ $f_{i,0}=f_{i-1,0}+f_{i-1,k-1}$…
Description 辣鸡蒟蒻SOL是一个傻逼,他居然觉得数很萌! 今天他萌上了组合数.现在他很想知道simga(C(n,i))是多少:其中C是组合数(即C(n,i)表示n个物品无顺序选取i个的方案数),i取从0到n所有偶数. 由于答案可能很大,请输出答案对6662333的余数. Input 输入仅包含一个整数n. Output 输出一个整数,即为答案. Sample Input 3 Sample Output 4 Hint 对于20%的数据,n <= 20: 对于50%的数据,n <= 1…
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都有高度,对于编号为 $ i $ 座塔,其高度为 $ i $.对于一座塔,需要满足它与前面以及后面的塔的距离大于等于自身高度(不存在则没有限制).问有多少建造方案.答案对 $ m $ 取模. 塔不要求按编号为顺序建造. 输入格式 一行三个整数 $ n, l, m $. 输出格式 输出一个整数,代表答案…
前几次集训都没有记录每天的点滴……感觉缺失了很多反思的机会. 这次就从今天开始吧!不能懈怠,稳步前进! 2017/10/1 今天上午进行了集训的第一次考试…… 但是这次考试似乎是近几次我考得最渣的一次? 今天考试第一题是高精度+数学,第二题是图论计数大分类讨论,第三题是状压的树归 第一题看到之后自信的以为可以做出来,结果一直打到了还剩下半个多小时才打完. 还是too young too simple......今天这真的是致命的失误,后面再怎么考试也不能孤注一掷了 以及今天cdq基本上做完了(虽…
2017 ACM - ICPC Asia Ho Chi Minh City Regional Contest A - Arranging Wine 题目描述:有\(R\)个红箱和\(W\)个白箱,将这些箱子分成若干堆,使得每一堆只有一种颜色,然后将这些堆排成一排,使得相邻的堆的颜色不一样,并且每堆红箱的个数不能超过\(d\),问有多少种方案. solution 不会. B - Barcode 题目描述:有一排\(n\)个球,现在要给这\(n\)个球涂成红色或蓝色,使得红色球的个数等于蓝色球的个数…
2017 NWERC Problem A. Ascending Photo 题目描述:给出一个序列,将其分成\(m\)份(不需要均等),使得将这\(m\)份重新排列后构成的是不下降序列,输出最小的\(m-1\). solution 待解决. Problem B. Boss Battle 题目描述:有环形的\(n\)根柱子,只有一根柱子后面有boss,每次向一根柱子投一个炸弹,炸弹波及范围为那根柱子和相邻的柱子,若boss在这三根柱子后面,则boss被炸死,若boss没有被炸死,则boss会选择原…
NOIP2010~2017部分真题总结 2010 (吐槽)md这个时候的联赛还只有4题吗? 引水入城 只要发现对于有合法解的地图,每个蓄水厂贡献一段区间这个结论就很好做了 那么\(O(n^3)\)对每个蓄水厂的dfs一遍,判掉有无解之后贪心线段覆盖 所以这是个爆搜+性质+贪心题? 关押罪犯 贪心+并查集 贪心显然正确,那么并查集维护一下每个点的补集就没了 机器翻译 暴力模拟 乌龟棋 dp \(f[i][j][p][q]\)表示剩余4中卡片多少张,四方枚举dp一下 或者\(f[i][j][p][q…