题意: 给一个有n*m格子的矩形,设每格边长100,要从(1,1)走到(n,m)需要耗(n+m)*100,但是其中有一些格子是可以直接穿过的,也就是走对角线,是100*根号2长,给出k个可以穿过的格子,要求最短路径是多少? 思路: 研究一下知道当选择了某个可穿过的格子(x,y),那么对于任意格子(>x,y)和(x,>y)都是不能再选的,因为这样会更长,也就是说同一行最多只能选一个格子穿过.一开始想到的是在一个拓扑序列中求最小路径的权之和,这个模型倒是没错,但是怎么建立一个这样的图就麻烦了.再想…