【bzoj4589】Hard Nim FWT】的更多相关文章

题目描述 Claris和NanoApe在玩石子游戏,他们有n堆石子,规则如下: 1. Claris和NanoApe两个人轮流拿石子,Claris先拿. 2. 每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜. 不同的初始局面,决定了最终的获胜者,有些局面下先拿的Claris会赢,其余的局面Claris会负. Claris很好奇,如果这n堆石子满足每堆石子的初始数量是不超过m的质数,而且他们都会按照最优策略玩游戏,那么NanoApe能获胜的局面有多少种. 由于答案可能…
题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$j$的方案数. 我们构造一个数组$g$,若i为不大于$m$的质数,则$g[i]=1$,否则为$0$. 那么显然,$f[i][j]=\sum f[i-1][k]\times g[j \oplus k]$.  其中$j \oplus k$表示$j$和$k$的按位异或. 然后我们不难发现,$f[i]为f[…
题解: 由博弈论可以知道题目等价于求这$n$个数$\^$为0 快速幂$+fwt$ 这样是$nlog^2$的 并不能过 而且得注意$m$的数组$\^$一下会生成$2m$ #include <bits/stdc++.h> using namespace std; #define rint register int #define IL inline #define rep(i,h,t) for(int i=h;i<=t;i++) #define dep(i,t,h) for(int i=t;…
[CF662A]Gambling Nim 题意:n长卡牌,第i张卡牌正面的数字是$a_i$,反面的数字是$b_i$,每张卡牌等概率为正面朝上或反面朝上.现在Alice和Bob要用每张卡牌朝上的数字玩NIM游戏,问先手获胜的概率. $n\le 5000,a_i,b_i\le 10^{18}$ 题解:傻逼题都不会了,先令所有的都是正面朝上,再令$S=a_1\ \text{xor}\ a_2...a_n,c_i=a_i\ \text{xor}\ b_i$,则问题变成了选出一些$c_i$使得异或和为$S…
[BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第三个回合(…
[CSU1911]Card Game(FWT) 题面 vjudge 题目大意: 给定两个含有\(n\)个数的数组 每次询问一个数\(x\),回答在每个数组中各选一个数,或起来之后的结果恰好为\(x\)的方案数. 题解 \(FWT\)的模板题 \(FWT\)写起来是真的舒服 #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath>…
[题解]毒蛇越狱(FWT+容斥) 问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难 用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后 枚举问号是01,裸的,\(O(2^{cnt[?]})\) 默认问号是1,利用子集和求,\(O(2^{cnt[1]})\) 默认问号是0,利用超集和求,\(O(2^{cnt[0]})\) 可以知道\(min(cnt)\le n/3\),所以复杂度\(O(n2^n 2^{n/3}Q)\) //@winlere #…
[CF772D]Varying Kibibits 题意:定义函数f(a,b,c...)表示将a,b,c..的10进制下的每一位拆开,分别取最小值组成的数.如f(123,321)=121,f(530, 932, 81)=30.给你一个数集$T={a_1,a_2...a_n}$,定义函数G(x) 求$G(1)\oplus G(2)\oplus ...G(999999)$. $1\le n \le 1000000,0\le a_i \le 999999$ 题解:发现f函数就是10进制下的按位与,所以我…
[CF850E]Random Elections 题意:有n位选民和3位预选者A,B,C,每个选民的投票方案可能是ABC,ACB,BAC...,即一个A,B,C的排列.现在进行三次比较,A-B,B-C,C-A.每次比较的结果由一个给定的函数决定$f(x):{0,1}^n\rightarrow {0,1}$,即读入一个长度为n的bool数组,返回一个bool变量.假如是A和B比较,则读入数组的第i个bool是 第i个人的排列中,A是否在B的前面:返回的bool是 A获胜还是B获胜.现在给你函数f(…
题意 \(K(1 \le K \le 10^9)\)堆石子,每堆石子个数不超过\(L(2 \le 50000)\),问Nim游戏中先手必败局面的数量,答案对\(10^9+7\)取模. 分析 容易得到\(f(i, k) = \sum_{j=0}^{n-1} f(i-1, j) f(i-1, k^j), f(1, i(2 \le i \le L))=1\),其中\(n=min(2^i, 2^i > L)\).发现其实这就是操作为\(xor\)的卷积.于是用鬼畜的fwt做就行了. 题解 然后fwt+快…