SVM用于线性回归】的更多相关文章

SVM用于线性回归 方法分析 在样本数据集()中,不是简单的离散值,而是连续值.如在线性回归中,预测房价.与线性回归类型,目标函数是正则平方误差函数: 在SVM回归算法中,目的是训练出超平面,采用作为预测值.为了获得稀疏解,即计算超平面参数w,b不依靠所有样本数据,而是部分数据(如在SVM分类算法中,支持向量的定义),采用误差函数 误差函数定义为,如果预测值与真实值的差值小于阈值将不对此样本做惩罚,若超出阈值,惩罚量为. 下图为误差函数与平方误差函数的图形 目标函数 观察上述的误差函数的形式,可…
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳永逸的方法,就是真的一次性考虑所有样本,并求解一个多目标函数的优化问题,一次性得到多个分类面,就像下图这样: 多个超平面把空间划分为多个区域,每个区域对应一个类别,给一篇文章,看它落在哪个区域就知道了它的分类. 只可惜这种算法还基本停留在纸面上,因为一次性求解的方法计算量实在太大,大到无法实用的地步…
源地址:http://www.blogjava.net/zhenandaci/archive/2009/03/26/262113.html 从 SVM的那几张图可以看出来,SVM是一种典型的两类分类器,即它只回答属于正类还是负类的问题.而现实中要解决的问题,往往是多类的问题(少部分例外,例如垃圾邮件过滤,就只需要确定“是”还是“不是”垃圾邮件),比如文本分类,比如数字识别.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 还以文本分类为例,现成的方法有很多,其中一种一劳永逸的方法,就是真…
转自:http://www.lining0806.com/%E5%B0%86svm%E7%94%A8%E4%BA%8E%E5%A4%9A%E7%B1%BB%E5%88%86%E7%B1%BB/ SVM是一种典型的二类分类器,是采用最大间隔化策略来确定特征空间中最优超平面的,也就是说它只能回答属于正类还是负类的问题.而现实中要解决的往往是多类分类问题,如何将一个二类分类器转换成一个多类分类器呢? 一.一对多方法 比如有k个类别,每次分类都把1个类别作为正样本,其余k-1个类别作为负样本,依次类推.…
学习笔记:SVM柔性边界的补充和SVR(支持向量回归) 作者 小刺猬yyx 关注 2016.08.06 10:31* 字数 1608 阅读 421评论 0喜欢 2 上一个笔记对于SVM不能完美分类的情况,之前并没有搞得很透彻.在学习SVR的时候,我又重新思考了一下关于SVM对于不能完美分类的情况,搞清楚SVM不可完美分类的情况之后,也就更容易理解SVR的美妙了. SVM柔性边界 所谓柔性边界,就是会允许分类问题的不完美,能够包容一部分分类出现误差的情况,因为现实中往往会存在一些特例,或者我们不可…
前面已经对感知机和SVM进行了简要的概述,本节是SVM算法的实现过程用于辅助理解SVM算法的具体内容,然后借助sklearn对SVM工具包进行实现. SVM算法的核心是SMO算法的实现,首先对SMO算法过程进行实现,先对一些辅助函数进行定义: 1 # 先定义一些辅助函数 2 # 选取第二变量函数 3 def select_J_rand(i, m): 4 j=i 5 while(j==i): 6 j = int(random.uniform(0, m)) 7 return j 8 9 # 定义对α…
课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息…
转自:http://blog.csdn.net/yangliuy/article/details/7316496SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法…
1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住房价格.在这里,我要根据不同房屋尺寸所售出的价格,画出我的数据集: 我们来看这个数据集,如果你有一个朋友正想出售自己的房子,如果你朋友的房子是1250平方尺大小,你要告诉他们这房子能卖多少钱. 那么,你可以做的一件事就是构建一个模型,也许是条直线.从这个数据模型上来看,也许你可以告诉你的朋友,他大概…
svm小结 1.超平面 两种颜色的点分别代表两个类别,红颜色的线表示一个可行的超平面.在进行分类的时候,我们将数据点  x 代入  f(x)  中,如果得到的结果小于 0 ,则赋予其类别 -1 ,如果大于 0 则赋予类别 1 .如果  f(x)=0 ,则很难办了,分到哪一类都不是.事实上,对于  f(x)  的绝对值很小的情况,我们都很难处理,因为细微的变动(比如超平面稍微转一个小角度)就有可能导致结果类别的改变.理想情况下,我们希望  f(x)  的值都是很大的正数或者很小的负数,这样我们就能…