大数据学习——sparkRDD】的更多相关文章

https://www.cnblogs.com/qingyunzong/p/8899715.html 练习1:map.filter //通过并行化生成rdd val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10)) //对rdd1里的每一个元素乘2然后排序 val rdd2 = rdd1.map(_ * 2).sortBy(x => x, true) //过滤出大于等于十的元素 val rdd3 = rdd2.filter(_…
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用介绍.本文主要讲解如何搭建Hadoop+Hive的环境. 一.环境准备 1,服务器选择 本地虚拟机 操作系统:linux CentOS 7 Cpu:2核 内存:2G 硬盘:40G 说明:因为使用阿里云服务器每次都要重新配置,而且还要考虑网络传输问题,于是自己在本地便搭建了一个虚拟机,方便文件的传输以…
引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环境,并进行了相应的测试.本文主要讲的是如何将Hive和HBase进行整合. Hive和HBase的通信意图 Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-*.jar工具类来实现,通信原理如下图…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
大数据学习之Linux进阶 1-> 配置IP 1)修改配置文件 vi /sysconfig/network-scripts/ifcfg-eno16777736 2)注释掉dhcp #BOOTPROTO="dhcp" 3)添加配置(windows->ipconfig -all) IPADDR=192.168.50.179 NETMASK=225.255.255.0 GATEWAY=192.168.50.1 DNS1=219.141.136.10 4)重启网卡 service…
大数据学习之Linux基础 01:Linux简介 linux是一种自由和开放源代码的类UNIX操作系统.该操作系统的内核由林纳斯·托瓦兹 在1991年10月5日首次发布.,在加上用户空间的应用程序之后,成为Linux操作系统. Linux也是自由软件和开放源代码软件发展中最著名的例子. 应用:长时间的运行编写的程序代码,可以安装在各种计算机硬件设备中,如: 手机.平板电脑.路由器等 安卓最底层运行在linux. 02:Linux的分类 各种版本 1->Linux根据市场的需求不同,基本分两个方向…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用. 那么下面就对大数据学习思路里的strom流式计算进行简单分解,了解一下在学习大数据中应该了解哪些流式计算的知识. 1.redis缓存系统大纲 学习内容:Redis的特点.安装如何使用命令客户端,redis的字符串类型.…
hadoop生态系统 zookeeper负责协调 hbase必须依赖zookeeper flume 日志工具 sqoop 负责 hdfs dbms 数据转换 数据到关系型数据库转换 大数据学习群119599574 hbase简介 hadoop database 是一个高可靠性.高性能.面向列.可伸缩.实时读写的分布式数据库 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce 来处理Hbase中的海量数据,利用Zookeeper作为其分布式系统服务 主要用来存储非结…