下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector old_v…
获取器操作都是针对数据而不是数据集的,要通过append()方法添加数据表不存在的字段 public function getMembership(){ //加入会员s_id = 1 $business = BusinessModel::getMembership(); if(!$business){ throw new BusinessException([ 'msg'=>'加入会员业务不存在或已禁用' ]); } $business->append(['cate_name','',''])…
tensorflow实现基于LSTM的文本分类方法 作者:u010223750 引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下 模型说明 这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图  简单解释一下这个图…
MNIST(Mixed National Institute of Standards and Technology)http://yann.lecun.com/exdb/mnist/ ,入门级计算机视觉数据集,美国中学生手写数字.训练集6万张图片,测试集1万张图片.数字经过预处理.格式化,大小调整并居中,图片尺寸固定28x28.数据集小,训练速度快,收敛效果好. MNIST数据集,NIST数据集子集.4个文件.train-label-idx1-ubyte.gz 训练集标记文件(28881字节)…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
1. tensorflow 基本使用方法 2. mnist 数据集简介与预处理 3. 聚类算法模型 4. 使用卷积神经网络进行特征生成 5. 训练网络模型生成结果 how to install tensorflow in anaconda based win7: first step: We do not have any Miniconda installers based on Python 3.5 yet, but are going to base our Miniconda3 inst…
最近在看这本书看到Chapter 3.Classification,是关于mnist数据集的分类,里面有个代码是 from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist 我十分郁闷,因为这个根本加载不出来-_-||,报了个OSError,改了data_home之后也有error,然后我按照网上的方法改data_home也没用,弄了很久最后决定自己弄这个数据集出来(气死了) 百度搜…
一.MNIST实验内容 MNIST的实验比较简单,可以直接通过下面的程序加上程序上的部分注释就能很好的理解了,后面在完善具体的相关的数学理论知识,先记录在这里: 代码如下所示: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt import numpy as np %matplotlib inline mnist =…
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True) MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签:共有10000(mnist.t…
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加peleenet_at_coco.py和peleenet_at_coco_run.py.其中网络结构和backbone等在师兄把项目交付给我之前已经基本完成,所以我主要的工作就是处理COCO的数据(转换成tfrecord文件)和简单更改一些调用的接口.另外PocketFlow中已经包含在VOC上的数据处理,且…
from tensorflow.examples.tutorials.mnist import input_data 首先需要连网下载数据集: mnsit = input_data.read_data_sets(train_dir='./MNIST_DATA', one_hot=True) # 如果当前文件夹下没有 MNIST_DATA,会首先创建该文件夹,然后下载 mnist 数据集 训练集与测试集的划分: X_train, y_train = mnist.train.images, mnis…
###生成批次数据 import tensorflow as tf '''reapt()生成重复数据集 batch()将数据集按批次组合''' file_name = ['img1','img2','img3','img4'] label = [1,2,3,4] dataset =tf.data.Dataset.from_tensor_slices((file_name,label)) dataset1 = dataset.repeat().batch(3) ##定义一个迭代器迭代取批量数据 d…
jupyter(Win版本)下载数据集会默认到C盘下,Linux会默认到root下,修改方式如下· tf1.x: import os import tensorflow as tftf.disable_v2_behavior()tf.enable_eager_execution() train_dataset_url = "http://download.tensorflow.org/data/iris_training.csv" train_dataset_fp = tf.keras…
先来看一下我们的目录: dataset1 和creat_dataset.py 属于同一目录 mergeImg1 和mergeImg2 为Dataset1的两子目录(两类为例子)目录中存储图像等文件 核心文件creat_dataset.py 文件如下#来生成训练集和测试集的矩阵 import cv2 as cv import numpy as np import os dataset_path = ["mergeImg1","mergeImg2"] #这里为了增加限制…
MNIST数据集,每张图片包含28*28个像素,把一个数组展开成向量,长度为28*28=784,故数据集中mnist.train.images是一个形状为[60000,784]的张量,第一个维度数字用来索引图片,第二个维度数字用来索引每张图片的像素点,像素的强度介于0-1. MNIST数据集的标签是介于0-9的数字,要把标签转化成“one_hot vectors". 一个one_hot向量除了某一位数字是1以外,其余维度数字都是0,比如将标签0表示为([1,0,0,0,0,0,0,0,0,0])…
前面两篇随笔实现的单层神经网络 和多层神经网络, 在MNIST测试集上的正确率分别约为90%和96%.在换用多层神经网络后,正确率已有很大的提升.这次将采用卷积神经网络继续进行测试. 1.模型基本结构 如下图所示,本次采用的模型共有8层(包含dropout层).其中卷积层和池化层各有两层. 在整个模型中,输入层负责数据输入:卷积层负责提取图片的特征:池化层采用最大池化的方式,突出主要特征,并减少参数维度:全连接层再将个特征组合起来:dropout层可以减少每次训练的计算量,并可以一定程度上避免过…
1.Bookmark var p:pointer; procedure TForm1.Button1Click(Sender: TObject);//加个标签 begin   p:=cxGrid1DBTableView1.DataController.DataSet.GetBookmark; end;    procedure TForm1.Button2Click(Sender: TObject);//行焦点定位到标签 begin   cxGrid1DBTableView1.DataContr…
//取name字段的示例   edit1.Text:=ADOquery1.Fields[2].AsString;   //取得数据表的第二个字段的值 edit2.Text:=ADOquery1.FieldValues['name']; edit3.Text:=ADOquery1['name']; edit4.Text:=ADOquery1.FieldByname('name').AsString;   //以下是设为永久字段时设置的 edit5.Text:=adoquery1name.AsStr…
tensorflow中可以通过配置环境变量 'TF_CPP_MIN_LOG_LEVEL' 的值,控制tensorflow是否屏蔽通知信息.警告.报错等输出信息. 使用方法: import os import tensorflow as tf os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} TF_CPP_MIN_LOG_LEVEL 取值 0 : 0也是默认值,输出所有信息 TF_CPP_MIN_LOG_LEVEL…
数据集下载地址:下载 摘要:MicroblogPCU是从新浪微博採集到的.它能够被用于研究机器学习方法和社会关系研究. 这个数据集被原作者用于探索微博中的spammers(发送垃圾信息的人).他们的demo在这里 数据集的属性信息: weibo_user.csv   -user_id: 用户ID -user_name: 用户昵称 -gender:性别,male,female.other -class:账户级别 -message:账户注冊位置或其它个人信息 -post_num: 邮政编码 -fol…
tensorflow2.x 使用过程中常见错误(持续更新) 安装配置,使用tensorflow训练模型,转换为tflite模型,并部署与移动端过程中,虽然不难,但是也常出现一些莫名其妙的问题,下面简单记录下解决方法. 一.安装中问题 1. ImportError: Could not find 'cudart64_110.dll' 安装配置完tensorflow2.4.0发现引入包时,发生这样的错误,还有类似缺少cudart64_100.dll等问题. 产生这样的问题,多半是版本不对应,可以看一…
1.初始化为常量 tf.constant_initializer(value, dtype) 生成一个初始值为常量value的tensor对象 value:指定的常量 dtype:数据类型 tf.zeros_initializer(dtype) 生成一个初始值全为0的tensor对象 tf.ones_initializer(dtype) 生成一个初始值全为1的tensor对象 2.初始化为正太分布 tf.random_normal_initializer(mean, stddev, seed,…
我使用的caffe模型:https://github.com/BVLC/caffe/tree/ea455eb29393ebe6de9f14e88bfce9eae74edf6d/models/bvlc_alexnet 其中,需要下载deploy prototxt文件和caffmodel以供转换模型用. 首先将caffe模型转换为TensorFlow,参考:https://github.com/ethereon/caffe-tensorflow 但是将其生产pb模型参考了如下代码,见https://…
我们在训练好模型的时候,通常是要将模型进行保存的,以便于下次能够直接的将训练好的模型进行载入. 1.保存模型 首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起来,具体的代码流程如下 # 前面的是定义好的模型结构 # 前面的代码是模型的定义代码 saver = tf.train.Saver() # 生成saver with tf.Session() as sess: sess.run(init) # 模型的初始化 # # 模型的训练代码,当模型训练完毕后,…
variable_names = [v.name for v in tf.all_variables()] values = sess.run(variable_names) for k,v in zip(variable_names, values): print("Variable: ", k) print("Shape: ", v.shape) print(v)…
参考书 <TensorFlow:实战Google深度学习框架>(第2版) 例子:从一个张量创建一个数据集,遍历这个数据集,并对每个输入输出y = x^2 的值. #!/usr/bin/env python # -*- coding: UTF-8 -*- # coding=utf-8 """ @author: Li Tian @contact: 694317828@qq.com @software: pycharm @file: dataset_test1.py @…
本文转自:Tensorflow]超大规模数据集解决方案:通过线程来预取 原文地址:https://blog.csdn.net/mao_xiao_feng/article/details/73991787 现在让我们用Tensorflow实现一个具体的Input pipeline,我们使用CoCo2014作为处理对象,网上应该可以下载到CoCo训练集,train2014这个文件.下载链接: http://msvocds.blob.core.windows.net/coco2014/train201…