利用背景流量数据(contexual flow data)识别TLS加密恶意流量 识别出加密流量中潜藏的安全威胁具有很大挑战,现已存在一些检测方法利用数据流的元数据来进行检测,包括包长度和到达间隔时间等.来自思科的研究人员扩展现有的检测方法提出一种新的思路(称之为“data omnia”),不需要对加密的恶意流量进行解密,就能检测到采用TLS连接的恶意程序,本文就该检测方法进行简要描述,主要参照思科在AISec’16发表的文章<Identifying Encrypted Malware Traf…
识别出加密流量中潜藏的安全威胁具有很大挑战,现已存在一些检测方法利用数据流的元数据来进行检测,包括包长度和到达间隔时间等.来自思科的研究人员扩展现有的检测方法提出一种新的思路(称之为“dataomnia”),不需要对加密的恶意流量进行解密,就能检测到采用TLS连接的恶意程序,本文就该检测方法进行简要描述,主要参照思科在AISec’16发表的文章<IdentifyingEncrypted Malware Traffic with Contextual Flow Data>[1][2][3]. 一…
2018 年的文章, Using deep neural networks to hunt malicious TLS certificates from:https://techxplore.com/news/2018-10-deep-neural-networks-malicious-tls.html 使用LSTM对恶意证书进行分类,准确率94% 下面是介绍. Moreover, encryption can give online users a false sense of securi…
网络安全领域中基于PCAP流量的数据集 MAWI Working Group Traffic Archive URL:http://mawi.wide.ad.jp/mawi/ CIC dataset Canadian Institute for Cybersecurity datasets are used around the world by universities, private industry and independent researchers. URL:https://www…
https://xz.aliyun.com/t/2190 Ya-Lin Zhang, Longfei Li, Jun Zhou, Xiaolong Li, Yujiang Liu, Yuanchao Zhang, Zhi-Hua ZhouNational Key Lab for Novel Software Technology, Nanjing University, ChinaAnt Financial Services Group, China来源: CCS’17 https://dl.a…
PU learning问题描述 给定一个正例文档集合P和一个无标注文档集U(混合文档集),在无标注文档集中同时含有正例文档和反例文档.通过使用P和U建立一个分类器能够辨别U或测试集中的正例文档 [即想要精确分类U或测试集中的正例文档和反例文档] 应用: 从多个无标注集中学习 从不可靠的反例数据中学习 发现测试集中的突发文档 发现异常值 基于PU-Learning的恶意URL检测 from:https://xz.aliyun.com/t/2190 基于PU-Learning的恶意URL检测 Ya-…
Malware detection 目录 可执行文件简介 检测方法概述 资源及参考文献 可执行文件简介 ELF(Executable Linkable Format) linux下的可执行文件格式,按照ELF格式编写的文件包括:.so..a等 PE(Portable Executable) windows下的可执行文件格式,按照PE格式编写的文件包括: .dll..lib..exe等 参考文献[3]中对ELF的各个字段作了详细介绍 Linux和Windows可执行文件分类: ELF文件类型 说明…
检测分类 1)误用检测 误用检测主要是根据已知的攻击特征直接检测入侵行为.首先对异常信息源建模分析提取特征向量,根据特征设计针对性的特征检测算法,若新数据样本检测出相应的特征值,则发布预警或进行反应. 优点:特异性,检测速度快,误报率低,能迅速发现已知的安全威胁. 缺点:需要人为更新特征库,提取特征码,而攻击者可以针对某一特征码进行绕过. 2)异常检测 异常检测主要是检测偏离正常数据的行为.首先对信息源进行建模分析,创建正常的系统或者网络的基准轮廓.若新数据样本偏离或者超出当前正常模式轮廓,异常…
基于深度学习的安卓恶意应用检测 from:http://www.xml-data.org/JSJYY/2017-6-1650.htm 苏志达, 祝跃飞, 刘龙     摘要: 针对传统安卓恶意程序检测技术检测准确率低,对采用了重打包和代码混淆等技术的安卓恶意程序无法成功识别等问题,设计并实现了DeepDroid算法.首先,提取安卓应用程序的静态特征和动态特征,结合静态特征和动态特征生成应用程序的特征向量:然后,使用深度学习算法中的深度置信网络(DBN)对收集到的训练集进行训练,生成深度学习网络:…
Mathematics Malware Detected Tools 重要:由于缺少测试数据,部分结论可能不正确.更多更准确的结论,还需要进行大量实验. 概述 mmdt(Mathematics Malware Detected Tools)是一款基于数学方法的最简单的类"机器学习"工具.该工具通过数学方法对目标对象进行处理,生成相应的标准"指纹",通过对指纹的处理,实现"机器学习"中的"分类"."聚类"方法…