首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
矩阵的奇异值分解(SVD)及其应用
】的更多相关文章
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD)
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 最近在学习高动态图像(HDR)合成的算法,其中需要求解一个超定方程组,因此花了点时间研究了一下如何用 GSL 来解决这个问题. GSL 里是有最小二乘法拟合(Least-Squares Fitting)的相关算法,这些算法的声明在 gsl_fit.h 中,所以直接用 GSL 提供的 gsl_fit_linear 函数就能解决这个问题.不过我想顺便多学习一些有关 SVD 的知识.所以就没直接使用 gsl_fit_linear 函数. SVD…
用 GSL 求解超定方程组及矩阵的奇异值分解(SVD) 2
接上一篇... 下面我们将 SVD 相关的功能封装成一个类,以方便我们提取 S 和 V 的值. 另外,当我们一个 A 有多组 x 需要求解时,也只需要计算一次 SVD 分解,用下面的类能减少很多计算量. 头文件如下: #ifndef GSLSINGULARVALUEDECOMPOSITION_H #define GSLSINGULARVALUEDECOMPOSITION_H #include <gsl/gsl_matrix.h> #include <gsl/gsl_vector.h>…
矩阵奇异值分解(SVD)及其应用
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题…
矩阵的奇异值分解(SVD)(理论)
矩阵的奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言处理(NLP)中的潜在语义索引(Latent Semantic Indexing),推荐算法等. 鉴于实际应用,本次分享中的数域为实数域,即我们只在实数范围内讨论.我们假定读者具有大学线性代数的水平.那么,矩阵的奇异值分解定理如下: (定理)(奇异值分解定理)任意一个$m \times n$矩阵A可…
机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
奇异值分解(SVD)原理与在降维中的应用
奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam…
数值分析之奇异值分解(SVD)篇
在很多线性代数问题中,如果我们首先思考若做SVD,情况将会怎样,那么问题可能会得到更好的理解[1]. --Lloyd N. Trefethen & David Bau, lll 为了讨论问题的方便以及实际中遇到的大多数问题,在这里我们仅限于讨论实数矩阵,注意,其中涉及到的结论也很容易将其扩展到复矩阵中(实际上,很多教材采用的是复矩阵的描述方式),另外,使用符号 x,y 等表示向量,A,B,Q等表示矩阵. 首先给出正交矩阵…
转载:奇异值分解(SVD) --- 线性变换几何意义(下)
本文转载自他人: PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里 …
特征值分解与奇异值分解(SVD)
1.使用QR分解获取特征值和特征向量 将矩阵A进行QR分解,得到正规正交矩阵Q与上三角形矩阵R.由上可知Ak为相似矩阵,当k增加时,Ak收敛到上三角矩阵,特征值为对角项. 2.奇异值分解(SVD) 其中U是m×m阶酉矩阵:Σ是半正定m×n阶对角矩阵:而V*,即V的共轭转置,是n×n阶酉矩阵. 将矩阵A乘它的转置,得到的方阵可用于求特征向量v,进而求出奇异值σ和左奇异向量u. #coding:utf8 import numpy as np np.set_printoptions(precision…
奇异值分解(SVD) --- 几何意义
原文:http://blog.sciencenet.cn/blog-696950-699432.html PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singul…