NSGA-II算法学习】的更多相关文章

NSGA(非支配排序遗传算法).NSGAII(带精英策略的非支配排序的遗传算法),都是基于遗传算法的多目标优化算法,都是基于pareto最优解讨论的多目标优化,遗传算法已经做过笔记,下面介绍pareto(帕累托)最优解的相关概念.本文是基于参考文献做的读书笔记. 1 NSGA算法 1.1 Paerot支配关系 1.2  Pareto最优解定义 多目标优化问题与单目标优化问题有很大差异.当只有一个目标函数时,人们寻找最好的解,这个解优于其他所有解,通常是全局最大或最小,即全局最优解.而当存在多个目…
DSP算法学习-过采样技术 彭会锋 2015-04-27 23:23:47 参考论文: 1 http://wr.lib.tsinghua.edu.cn/sites/default/files/1207488664463.pdf…
算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; } 计算1+2的值结果:3 进一步计算加减乘除 #include <conio.h> #include<stdio.h> int main(){ printf(+); printf(-); printf(*); printf(/); printf(/); getch(); ; } 结…
Python之路,Day21 - 常用算法学习   本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. 一…
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组内进行直接插入排序:然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<:…<d2<d1),即所有记录放在同一组中进行直接插入排序为止. 该方法实质上是一种分组插入方法. 算法编码 void shellSort(int v[], int n)…
算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到达,输出"不能走到那里".(N,M<=50,起点,终点分别用S,G表示) 输入样例:N=5,M=5 #S### ..##. #.### ..### ..G## 1 2 3 4 5 6 输出:5 0x2 BFS解法 ​ bfs用来求解最短路径相当简单. #include <ios…
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的是在给定范围内所有满足条件的\(x\),同时为了方便,我们只讨论\(p\)是奇质数的情况 前置定理 \(x^2 \equiv (x+p)^2 \pmod p\) 证明:\(x^2 \equiv x^2 + 2xp + p^2 \pmod p\)显然成立 对于\(x^2 \equiv n \pmod…
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的最长回文子串 时间复杂度:O(N) 算法步骤: 1.添加特殊字符 由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上'#',那么 bob -->…
第四百一十五节,python常用排序算法学习 常用排序 名称 复杂度 说明 备注 冒泡排序Bubble Sort O(N*N) 将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮 插入排序 Insertion sort O(N*N) 逐一取出元素,在已经排序的元素序列中从后向前扫描,放到适当的位置 起初,已经排序的元素序列为空 选择排序 O(N*N) 首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾.以…
PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的. 实现数据降维的步骤: 1.将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵 2.求样本矩阵的协方差矩阵 3.求协方差矩阵的特征值和特征向量 4.将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵.并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵. 5.用映射矩阵对数据进行映射,达到数据降…