Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression 2019-05-20 19:34:55 Paper: https://arxiv.org/pdf/1902.09630.pdf Project page: https://giou.stanford.edu/ Code: https://github.com/generalized-iou 1. Background and M…
论文原址:https://arxiv.org/pdf/1902.09630.pdf github:https://github.com/generalized-iou 摘要 在目标检测的评测体系中,IoU是最流行的评价准则.然而,在对边界框的参数进行优化时,常用到距离损失,而按照IOU的标准则是取其最大值,二者之间是有一定差别的.对一个标准进行优化的目标函数是其标准本身.比如,对于2D的坐标对齐的边界框,可以直接使用IoU作为回归损失.然而,该方法存在一个弊端,就是当两个边界框不发生重叠时,Io…
论文地址:Generalized Intersection over Union 一.相关工作 目标检测精度标准 度量检测优劣基本基于 IOU,mAP 是典型的基于 IOU 的标准,但是 mAP 仅有一个 threshold,对于过了线的预测框一视同仁,不能进一步衡量其优劣,所以 MS COCO 挑战赛提出了多 IOU 阈值的综合 mAP 评价标准(就是同时采用几个阈值,计算出多个 mAP 综合打分). Bounding box 表示方法和损失函数 YOLO v1 直接回归 bbox 的位置参数…
首先直观上来看 IoU 的计算公式: 由上述图示可知,IoU 的计算综合考虑了交集和并集,如何使得 IoU 最大,需要满足,更大的重叠区域,更小的不重叠的区域. 两个矩形窗格分别表示: 左上点.右下点的坐标联合标识了一块矩形区域(bounding box),因此计算两块 Overlapping 的 bounding boxes 的 IoU 如下: # ((x1[i], y1[i]), (x2[i], y2[i])) areai = (x2[i]-x1[i]+1)*(y2[i]-y1[i]+1)…
IoU算法可用与评估两个多维度数据的相似度,举一个实际应用,做CV,目标检测,我们需要评估模型的识别准确率,不同于二元类问题,普通的评估算法不合适,于是用到了这个算法,这个算法简单易懂,评估效果也不错. 这里主要讨论如何计算并评估两个矩形相交程度.有空再训练一个目标检测器,来试试水.. 第一种对于数据形状是这样的 $ (x_{top-left}, y_{top-left}, w, h) $,意思是:给出了起始坐标,矩形沿着 $ w, h $ 扩展开. 算法实现: double IoU(int*a…
CVPR2019目标检测方法进展综述 置顶 2019年03月20日 14:14:04 SIGAI_csdn 阅读数 5869更多 分类专栏: 机器学习 人工智能 AI SIGAI   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/SIGAI_CSDN/article/details/88687747 SIGAI特约作者 陈泰红研究方向:机器学习.图像处理 目标检测是很多计算机视觉应用的基…
IoU.GIoU.DIoU.CIoU损失函数 目标检测任务的损失函数由Classificition Loss和Bounding Box Regeression Loss两部分构成.目标检测任务中近几年来Bounding Box Regression Loss Function的演进过程,其演进路线是 一.IOU(Intersection over Union) 1. 特性(优点) IoU就是我们所说的交并比,是目标检测中最常用的指标,在anchor-based的方法.作用不仅用来确定正样本和负样…
CVPR2019目标检测论文看点:并域上的广义交 Generalized Intersection over Union Generalized Intersection over Union: A Metric and A Loss for BoundingBox Regression 并域上的广义交Intersection over Union(IOU)是目标检测标准最流行的评估手段.可是,使用boundingbox回归参数方法计算距离误差和最大化度量值优化之间有一个缺陷gap.度量优化目标…
非极大抑制(Non-maximum suppression)python代码实现原创Butertfly 发布于2018-11-20 18:48:57 阅读数 293 收藏展开定位一个物体,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的.非极大值抑制:先假设有6个矩形框,根据分类器类别分类概率做排序,从大到小分别属于物体的概率分别为A.B.C.D.E.F. (1)从最大概率矩形框F开始,分别判断B~F与A的重叠度IOU是否大于某个设定的阈值; (2)假设B.D与F的重叠度超过阈值,那么…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…