批处理引擎MapReduce编程模型】的更多相关文章

批处理引擎MapReduce编程模型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. MapReduce是一个经典的分布式批处理计算引擎,被广泛应用于搜索引擎索引构建,大规模数据处理等场景中,具有易于编程,良好的扩展性与容错性以及高吞吐率等特点.它主要由两部分组成:编程模型和运行时环境.其中编程模型为用户提供了非常易用的编程接口,用户只需像编写串行程序一样实现几个简单的函数即可实现一个分布式程序,而其他比较复杂的工作,如节点间的通信,节点失效,数据切分等,全部由MapReduc…
批处理引擎MapReduce内部原理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce作业生命周期 MapReduce作业作为一种分布式应用程序,可直接运行在Hadoop资源管理系统YARN之上(MapReduce On YARN).如下图所示,每个MapReduce应用程序由一个MRAppMaster以及一系列MapTask和ReduceTask构成,它们通过ResourceManager获得资源,并由NodeManager启动运行. 当用户向YARN中…
批处理引擎MapReduce程序设计 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.MapReduce API Hadoop同时提供了新旧两套MapReduce API,新API在就API基础上进行了封装,使得其在扩展性和易用性方面哥哥好.总结新就版本MapReduce API主要区别如下: ()存放位置 旧版本API放在“org.apache.hadoop.mapred”包中,而新版API则放在“org.apache.hadoop.mapreduce”包及其子包中. (…
上次新霸哥给大家介绍了一些hadoop的相关知识,发现大家对hadoop有了一定的了解,但是还有很多的朋友对mapreduce很模糊,下面新霸哥将带你共同学习mapreduce编程模型. mapreduce编程模型可以利用大量的商用服务器构成大规模集群来解决处理千兆级别的数据量问题.mapreduce编程模型有两个比较独立的步骤,分别是map和reduce map:比较常见的就是数据初始读取和转换的步骤,同时在这个步骤中,每个独立的输入数据记录都进行并行处理. Reduce: 一个数据整合或者加…
一.简单介绍 1.MapReduce 应用广泛的原因之中的一个在于它的易用性.它提供了一个因高度抽象化而变得异常简单的编程模型. 2.从MapReduce 自身的命名特点能够看出,MapReduce 由两个阶段组成:Map 和Reduce .用户仅仅需编写map( ) 和reduce( ) 两个函数,就可以完毕简单的分布式程序的设计.   1)map ( ) 函数以key/value 对作为输入,产生另外一系列key/value 对作为中间输出写入本地磁盘.MapReduce 框架会自己主动将这…
本文基于Windows平台Eclipse,以使用MapReduce编程模型统计文本文件中相同单词的个数来详述了整个编程流程及需要注意的地方.不当之处还请留言指出. 前期准备 hadoop集群的搭建 编程环境搭建 1.将官网下载的hadoop安装包解压,并记住下图所示的目录 2.创建java project,右键工程--->build path--->Configure build path 3.进行如下图操作 4.新建MapReduce编程要使用的环境包,如下图操作 5.将下图所示的commo…
MapReduce应用广泛的原因之一就是其易用性,提供了一个高度抽象化而变得非常简单的编程模型,它是在总结大量应用的共同特点的基础上抽象出来的分布式计算框架,在其编程模型中,任务可以被分解成相互独立的子问题.MapReduce编程模型给出了分布式编程方法的5个步骤: 迭代,遍历输入数据,将其解析成key/value对: 将输入key/value对映射map成另外一些key/value对: 根据key对中间结果进行分组(grouping): 以组为单位对数据进行归约: 迭代,将最终产生的key/v…
清明刚过,该来学习点新的知识点了. 上次说到关于MapReduce对于文本中词频的统计使用WordCount.如果还有同学不熟悉的可以参考博文大数据系列之分布式计算批处理引擎MapReduce实践. 博文发表后很多同学私下反映对于MapReduce的处理原理没有了解到.在这篇博文中楼主与大家交流下MapReduce的数据处理原理及MR中各角色的职责. 文末还有示例代码讲解.. 1.MapReduce中的数据流动 最简单的过程: map - reduce 定制了partitioner以将map的结…
Hadoop集群_WordCount运行详解--MapReduce编程模型 下面这篇文章写得非常好,有利于初学mapreduce的入门 http://www.nosqldb.cn/1369099810935.html…
MapReduce 编程模型给出了其分布式编程方法,共分 5 个步骤:1) 迭代(iteration).遍历输入数据, 并将之解析成 key/value 对.2) 将输入 key/value 对映射(map) 成另外一些 key/value 对.3) 依据 key 对中间数据进行分组(grouping).4) 以组为单位对数据进行归约(reduce).5) 迭代. 将最终产生的 key/value 对保存到输出文件中.MapReduce 将计算过程分解成以上 5 个步骤带来的最大好处是组件化与并…