【NOI2013】向量内积】的更多相关文章

[fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的数只会有0和1 两个0或1相乘,乘积就是与之后的值 所以可以把向量用bitset存起来,这样计算就是\(O(\frac{d}{32})\),结果是3.125 然后上暴力,\(O(\frac{n^2}{2}\times 3.125)\),能卡过(事实并非如此,飞起了) k=3 先讨论前14个点的k=3…
来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1}^{d}ai*bi$ 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助她解决这个问题 k=2时 n<=20000 d<=100  k=3时n<=1000,d<=100 或者n<=100000 d<=30 把两个向量内积看作矩…
传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对于 $B_{i,j}$ 的值,它其实就是向量 $i$ 和向量 $j$ 的内积 注意到 $K$ 只有 $2$ 或 $3$,先考虑 $K=2$ 时的情况 此时就是问矩阵 $B$ 在模 $2$ 意义下是否有位置的值为 $0$ ,并且求出位置 首先判断是否有 $0$ ,因为此时 $B$ 的元素不是 $0$…
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向量\(i\),假如前面所有向量和他的内积为\(1\),那么所有内积之和应该要和\(i-1\)模\(2\)同余,所以如果某个\(i\)不满足这个条件,就可以\(O(nd)\)的找出前面和他内积为\(0\)的向量.而内积之和可以看成当前向量和前面所有向量之和的内积,所以维护好前面向量的和,每次前缀和的当…
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助她解决这个问题Input 第一行包含3个正整数n,d,k,分别表示向量的个数,维数以及待检测的倍数.接下来n行每行有d个非负整数,其中第i行的第j个整数表示向量xi的第j维权值xi,j.Output 包含两个整数,用空格隔开.如果存在两个向量xp,xq的内积…
http://uoj.ac/problem/121 (题目链接) 题意 给出${n}$个${d}$维向量,问是否有两个不同的向量的内积是${k}$的倍数. Solution 又卡了一上午常数,我弃了T_T. 右转题解→_→:llg 代码 // uoj121 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #inc…
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助她解决这个问题 Solution 首先做一个转换:如果把 \(B=A*A^T\) 构造出来,那么 \(B[i][j]\) 就代表向量 \(i\) 和向量 \(j\) 的内积,如果为 \(\mod k=0\) 则满足要求 \(A^T\) 是转置矩阵,也就是把原…
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助她解决这个问题…
考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1&1也不一定就不存在,这本质上还是个随机算法,于是先random_shuffle一下. k=3时,注意到12≡22≡1(mod 3),于是维护一个平方前缀和.具体的化一下式子就可以得出. 调了半天才发现bzoj题面上的数据范围锅了. #include<iostream> #include&…
题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量前缀和的乘积就唯一确定 我们维护向量前缀和,第一个乘积情况不符的向量一定是答案,然后再枚举另一个向量即 \(O(nd)\) 如果模数为\(3\),乘积如果不为\(0\),还可以为\(1\)或\(2\),我们讨论的方法就不适用了 其实还是可以的 \[1^2 = 2^2 = 1 \pmod 3\] 我们…
洛谷题面传送门 一道很神的随机化. 首先由于我们要求向量点乘 \(\bmod k\) 的值,因此我们可以将所有 \(x_{i,j}\) 都模上 \(k\),显然该操作不影响结果正确性. 注意到这里的 \(d\) 与 \(n\) 不同阶,这也就暗示我们要找到一个复杂度重心偏向 \(d\) 的算法,首先考虑 \(k=2\) 的情形,我们考虑依次枚举所有向量并维护它们的前缀和 \(\vec{S}\),对于每个向量 \(\vec{x_i}\) 我们求出 \(\vec{S}·\vec{x_i}\bmod…
3243: [Noi2013]向量内积 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 1249  Solved: 248[Submit][Status][Discuss] Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助…
#2664. 「NOI2013」向量内积 两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权值的乘积和,即: \[ (A,B) = \displaystyle \sum_{i=1}^d{a_ib_i} = a_1b_1 + a_2b_2 + \ldots + a_db_d \] 现有 \(n\) 个 \(d\) 维向量 \(x_1, \ldots, x_n\),小喵喵想知道是否存在两个向量…
[BZOJ3243][NOI2013]向量内积(矩阵,数论) 题面 BZOJ 题解 这题好神仙. 首先\(60\)分直接是送的.加点随机之类的可以多得点分. 考虑正解. 我们先考虑一下暴力. 我们把\(n\)个向量拼接在一起,形成一个\(n\times d\)的矩阵. 显然这个矩阵和它的转置矩阵,也就是一个\(d\times n\)的矩阵做乘法, 结果是一个\(n\times n\)的矩阵,第\(i\)行第\(j\)列就是\(i,j\)两个向量的结果. 如果这个矩阵全是\(1\)(除主对角线),…
小C做了之后很有感觉的题目之一,但因为姿势不对调了很久. Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助她解决这个问题. Input 第一行包含3个正整数n,d,k,分别表示向量的个数,维数以及待检测的倍数.接下来n行每行有d个非负整数,其中第i行的第j个整数表示向量xi的第j维权值xi,j. Outp…
定义两个$d$维向量${A=[a_1,a_2....a_n]}$,${B=[b_1,b_2....b_n]}$的内积为其相对应维度的权值的乘积和: $${\left \langle A,B \right \rangle= \sum _{i=1}^{d}a_i*b_i}$$ 现在有$n$个$d$维向量,判断是否存在两个向量的内积为$k$的倍数${(2\leq k\leq 3)}$ 我们考虑将$n$个$d$维的向量构成一个$n*d$的矩阵$A$,$A^{T}$为$A$的转置矩阵. 令矩阵${B=A*…
原文链接www.cnblogs.com/zhouzhendong/UOJ121.html 前言 完蛋了我越来越菜了贺题都不会了. 题解 $O(n ^ 2 d) $ 暴力送 60 分. Bitset 优化一下说不定更稳.可能有 85 分. 来讲正解. 注意下文中的 "p" 表示原题中的 "k". 首先我们来解决一个问题: 如何在较低的复杂度下判定矩阵 A,B,C 是否满足 \(A\times B = C\) . 做法是:随机 O(1) 个行向量 \(x\),判定 \(…
神题...... 还是大神讲得比较清晰~orz http://dffxtz.logdown.com/posts/197950-noi2013-vector-inner-product 启发题:poj3318 #include<cstdio> #include<cstdlib> #include<iostream> #include<fstream> #include<algorithm> #include<cstring> #incl…
Description 两个\(d\)维向量\(A=[a_{1},a_{2},...,a_{d}]\)与\(B=[b_{1},b_{2},...,b_{d}]\)的内积为其相对应维度的权值的乘积和,即: 现有\(n\)个\(d\)维向量\(x_{1},...,x_{n}\),小喵喵想知道是否存在两个向量的内积为\(k\)的倍数.请帮助她解决这个问题 Input 第一行包含\(3\)个正整数\(n,d,k\),分别表示向量的个数,维数以及待检测的倍数. 接下来\(n\)行每行有\(d\)个非负整数…
什么毒瘤...... 题意:给定n个d维向量,定义向量a和b的内积为 求是否存在两个向量使得它们的内积为k的倍数,并给出任一种方案.k <= 3. 解:很容易想到一个暴力是n2d的.显然我们不能n2枚举,所以要一次性把一个向量跟多个向量判断. 先思考k = 2的情况,显然每个位置和内积非0即1,这启发我们使用二进制. 假如把一个内积看成一个B进制数或者一个多项式,变量是B,我们就能发现,如果两个向量的内积为x,那么这个多项式的值也是x. 这种情况只要B取一个奇数就行了.理由是内积每一项非0即1,…
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助她解决这个问题 Input 第一行包含3个正整数n,d,k,分别表示向量的个数,维数以及待检测的倍数.接下来n行每行有d个非负整数,其中 第i行的第j个整数表示向量xi的第j维权值xi,j. N<=100000,D<=30,K<=3,Xi,j<…
[NOI2010] [NOI2010]海拔 高度只需要0/1,所以一个合法方案就是一个割,平面图求最小割. [NOI2010]航空管制 反序拓扑排序,每次取出第一类限制最大的放置,这样做答案不会更劣. 考虑如何求每一个的最早时间,同上述拓扑排序,该元素不入队,当无点可拓展时就是最早时间. [NOI2010]超级钢琴 对每一个左端点维护当前取出了前几大的右端点,用堆+主席树维护. [NOI2011] [NOI2011]兔农 不难发现数列模意义下的进程是:斐波那切数列,首项回归0(减一操作),斐波那…
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem 10983 18765 Y 1036 [ZJOI2008]树的统计Count 5293 13132 Y 1588 [HNOI2002]营业额统计 5056 13607 1001 [BeiJing2006]狼抓兔子 4526 18386 Y 2002 [Hnoi2010]Bounce 弹飞绵羊 43…
NOI2013 Day1 向量内积 题目描述:两个\(d\)维向量\(A\)与\(B\)的内积为其相对应维度的权值的乘积和,现有\(n\)个\(d\)维向量 ,求是否存在两个向量的内积为\(k\)(\(k=2,3\))的倍数. solution: 考虑\(k=2\),以下为在\((mod 2)\)下运算,设矩阵\(A_1,A_2\), 设矩阵\(P=A_1 * A_2\),若非对角线出现\(0\),则有一对内积为\(0\) \(P\)对角线上的\(0\)要处理一下 设矩阵\(F\),令\(F_{…
paper 4中介绍了支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西.不妨回忆一下上次最后一张图: 可以看到两个支撑着中间的 gap 的超平面,它们到中间的 separating hyper plane 的距离相等(想想看:为什么一定是相等的?),即我们所能得到的最大的geometrical margin γ˜.而“支撑”这两个超平面的必定会有一些点,试想,如果某超平面没有碰到任意一个点的话,那么我就可以进一步地扩充中间的 g…
转载自http://blog.csdn.net/passball/article/details/7661887,写的很好,虽然那人也是转了别人的做了整理(最原始文章来自http://www.blogjava.net/zhenandaci/archive/2009/02/13/254519.html,分了太多篇,读起来不太方便). =============================================== 一)SVM的背景简介 支持向量机(Support Vector Mac…
(一)SVM的背景简单介绍 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出很多特有的优势,并可以推广应用到函数拟合等其它机器学习问题中[10]. 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,依据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别随意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14]…
转自:http://blog.csdn.net/v_july_v/article/details/7624837 目录(?)[-] 支持向量机通俗导论理解SVM的三层境界 前言 第一层了解SVM 1分类标准的起源Logistic回归 2线性分类的一个例子 3函数间隔Functional margin与几何间隔Geometrical margin 4最大间隔分类器Maximum Margin Classifier的定义 第二层深入SVM 1从线性可分到线性不可分 11从原始问题到对偶问题的求解 1…
1. 引言 word embedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^).近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding).事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并…
Day 1 T1:向量内积 直接暴力有60.发现将n个向量合成$n\times d$的矩阵$A$,然后求$A\times A^T$,得到的矩阵包含了所有的答案. 先考虑$k=2$,将答案矩阵和全1矩阵比较,为0的地方就是答案. 回忆一个十分经典的问题:判断$A\times B$是否与$C$相等. 先随机一个行向量v,若$v\times(A\times B)=v\times A \times B\neq v\times C$,则直接返回$false$.多次随机,成功率为$1-(\frac12)^{…