在描述算法复杂度时,经常用到o(1), o(n), o(logn), o(nlogn)来表示对应算法的时间复杂度, 这里进行归纳一下它们代表的含义: 这是算法的时空复杂度的表示.不仅仅用于表示时间复杂度,也用于表示空间复杂度. O后面的括号中有一个函数,指明某个算法的耗时/耗空间与数据增长量之间的关系.其中的n代表输入数据的量. 比如时间复杂度为O(n),就代表数据量增大几倍,耗时也增大几倍.比如常见的遍历算法. 再比如时间复杂度O(n^2),就代表数据量增大n倍时,耗时增大n的平方倍,这是比线…