opencv-python 图像处理(五)】的更多相关文章

这篇随笔介绍使用OpenCV进行图像处理的第五章 阈值处理. 5  阈值处理 阈值是指像素到达某临界值.阈值处理表示像素到达某临界值后,对该像素点进行操作和处理. 例如:设定一幅图像素阈值为200,则图片中所有大于200的像素点设置为255,图片中所有小于或等于200的像素点设置为0. 5.1  处理类型 OpenCV中提供了cv2.threshold()函数进行阈值处理. 该函数中,要设定阈值处理的类型,常见类型如下: cv2.THRESH_BINARY               二值化阈值…
这篇随笔介绍使用OpenCV进行图像处理的第四章 几何变换. 4  几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 4.1  缩放 使用cv2.resize()函数实现对图像的缩放,但要注意cv2.resize()函数内的dsize参数与原图像的行列属性是相反的,也就是:目标图像的行数是原始图像的列数,目标图像的列数是原始图像的行数. 下面举例说明cv2.resize()函数的用法: 1 import cv2 2 img=cv2.imrea…
相信很多小伙伴都听过"滤波器"这个词,在通信领域,滤波器能够去除噪声信号等频率成分,然而在我们OpenCV中,"滤波"并不是对频率进行筛选去除,而是实现了图像的平滑处理.接下来,这篇随笔介绍使用OpenCV进行图像处理的第六章 图像平滑处理. 6  图像平滑处理 未经处理的图像含有噪声的影响,所以我们希望尽可能保留原图像的信息,过滤掉图像内部的噪声像素,得到平滑图像,这个过程称作图像的平滑处理. 一幅图像中,若某一像素点与周围像素值差异过大,该像素点很可能是噪声,则…
图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉检测.医学图像处理.信息压缩提取等领域都有重要的应用.接下来,这篇随笔介绍使用OpenCV进行图像处理的第七章 图像形态学操作. 7  图像形态学操作 形态学操作主要包括:腐蚀.膨胀.开运算.闭运算.形态学梯度运算.顶帽运算(礼帽运算).黑帽运算等操作.其中,腐蚀和膨胀是形态学中最基本的运算,其他方…
一.相关概念 一般我们人区分谁是谁,给物品分类,都是通过各种特征去辨别的,比如黑长直.大白腿.樱桃唇.瓜子脸.王麻子脸上有麻子,隔壁老王和儿子很像,但是儿子下巴涨了一颗痣和他妈一模一样,让你确定这是你儿子. 还有其他物品.什么桌子带腿.镜子反光能在里面倒影出东西,各种各样的特征,我们通过学习.归纳,自然而然能够很快识别分类出新物品. 而没有学习训练过的机器就没办法了. 但是图像是一个个像素点组成的,我们就可以通过不同图像之间这些差异性就判断两个图的相似度了.其中颜色特征是最常用的,(其余常用的特…
快过年了,各种互联网产品都出来撒红包.某宝一年一度的“集五福活动”更是成为每年的必备活动之一. 虽然到最后每人大概也就分个两块钱,但作为一个全民话题,大多数人还是愿意凑凑热闹. 毕竟对于如今生活在大城市的人来说,集福领红包和空荡的地铁车厢或许已是最大的“年味”了. ! 既然是凑热闹,怎么能少得了我. 之前我(GitPython公众号)发过一篇:<10几行代码,用python打造实时截图识别OCR>,介绍的是OCR文字识别的使用. 本篇文章再来对“福”字做文章,演示下如何用python图像处理功…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 「Py…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 普通操作 1. 读取像素 读取像素可以通过行坐标和列坐标来进行访问,灰度图像直接返回灰度值,彩色图像则返回B.G.R三个分量. 需要注意的是, OpenCV 读取图像是 BGR 存储显示. 灰度图片读取操作: import cv2 as cv # 灰度图像读取 gray_img = cv.imread("maliao.jpg", cv.IMREAD_GRAYSCALE) print(gray_img[20, 30])…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像属性包括行数,列数和通道数,图像数据类型,像素数等. 1. 形状:shape 图像的形状可以通过 shape 关键字进行获取,使用 shape 关键的后,获取的信息包括行数.列数.通道数的元祖. 需要注意的是,如果是灰度图片,只会返回图像的行数和列数,而彩色图片才会图像的行数.列数和通道数. 示例如…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 图像加法 图像加法有两种方式,一种是通过 Numpy 直接对两个图像进行相加,另一种是通过 OpenCV 的 add() 函数进行相加. 不管使用哪种方法,相加的两个图像必须具有相同的深度和类型,简单理解就是图像的大小…