洛谷 P3195 [HNOI2008]玩具装箱TOY】的更多相关文章

题目:https://www.luogu.org/problemnew/show/P3195 第一次用斜率优化...其实还是有点云里雾里的: 网上的题解都很详细,我的理解就是通过把式子变形,假定一个最优解,得到的是一条直线,斜率已知: 然后找到最接近这个最优斜率的点作为答案: 同时发现斜率单调递增,所以可以用单调队列: 代码是惊人地短呢: 还有一个问题,就是下面这篇代码中注释掉的那句会WA,可是我觉得它不过是把下面一句展开了而已啊? 代码如下: #include<iostream> #incl…
题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j…
题目大意:有n个物体,大小为$c_i$.把第i个到第j个放到一起,容器的长度为$x=j-i+\sum\limits_{k-i}^{j} c_k$,若长度为x,费用为$(x-L)^2$.费用最小. 题解: $$令:a_i=\sum\limits_{i=1}^{i} c_i$$ $$dp_i=min(dp_j+(a_i+i-a_j-j-L-1)^2)$$ $$(以下称两点斜率为 slope(A,B) )$$ $$令:b_j=a_i+i,d_i=b_i+i+L+1$$ $$\therefore dp_…
Code: #include<cstdio> #include<algorithm> using namespace std; const int maxn = 100000 + 123; long long s[maxn], f[maxn]; int l, n, q[maxn]; inline long long re_x(int i){ return s[i]; } inline long long re_y(int i){ return f[i] + (s[i] + l) *…
题意简述 有n个物体,第i个长度为ci 将n个物体分为若干组,每组必须连续 如果把i到j的物品分到一组,则该组长度为 \( j - i + \sum\limits_{k = i}^{j}ck \) 求最小花费 题解思路 \( dp[i] = min(dp[j] + (i - j - 1 + \sum\limits_{k = i}^{j}ck)) \) 然后斜率优化,单调队列维护 代码 #include <cstdio> using namespace std; typedef long lon…
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出dp方程 设dp[i]表示放置前i个物品需要的最小价值 dp[i]=min(dp[j]+(sum[i]-sum[j-1]+i-j-L)^2) sum[i]表示前缀和 暴力分有了!!恭喜! 下面我们引入斜率优化: 首先进行一个变形: 原来的式子可以变为:f[i]=min(f[j]+(sum[i]-sum…
链接: P3195 题意: 给出 \(n\) 个物品及其权值 \(c\),连续的物品可以放进一个容器,如果将 \(i\sim j\) 的物品放进一个容器,产生的费用是 \(\left(j-i+\sum\limits_{k=i}^jc_k-L\right)^2\),其中 \(L\) 是一个给出的常数,现在需要把所有物品都放进容器,请你最小化总费用. 分析: 这是一道非常经典的好题,适合练习单调队列优化和斜率优化dp. 我们设 \(sum[i]\) 表示物品权值的前缀和,\(dp[i]\) 表示前…
题目传送门 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=…
qwq斜率优化好题 第一步还是考虑最朴素的\(dp\) \[dp=dp[j]+(i-j-1+sum[i]-sum[j])^2 \] 设\(f[i]=sum[i]+i\) 那么考虑将上述柿子变成$$dp[i]=dp[j]+(f[i]-f[j]-1-l)^2$$ \[= dp[j]+f[j]^2-2\times f[j]\times (2[i]-1) - 2\times l \times f[j] \] 当存在一个\(j>k且j比k优秀的条件是\) \[dp[j]+(f[i]-f[j]-1-l)^2…
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+(s[i]+i-(s[j]+j+L+1))^{2}$ 为了处理方便,我们套路地设 $a[i]=s[i]+i$ $b[i]=s[i]+i+L+1$ 于是得出 $f[i]=f[j]+(a[i]-b[j])^{2}$ 拆开:$f[i]=f[j]+a[i]^{2}-2*a[i]*b[j]+b[j]^{2}$…