前言 Decision tree is one of the most popular classification tools 它用一个训练数据集学到一个映射,该映射以未知类别的新实例作为输入,输出对这个实例类别的预测. 决策树相当于将一系列问题组织成树,具体说,每个问题对应一个属性,根据属性值来生成判断分支,一直到决策树的叶节点就产生了类别. 那么,接下来的问题就是怎么选择最佳的属性作为当前的判断分支,这就引出了用信息论划分数据集的方式. 在信息论中,划分数据之前和之后信息发生的信息变化成为…
咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sklearn,主要是在categorical data encoding那一块.其实sklearn在数据建模方面也是非常666的.一般常用的模型都可以用sklearn来做的.既然它都这么牛逼了,咱们为啥还要学TensorFlow呢?其实主要的原因有两个,一是因为Google在流量方面的强势推广,导致绝…
使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Test change pixel data into more categories than 0/1:#int(pixel)/50: 37%#int(pixel)/64: 45.9%#int(pixel)/96: 52.3%#int(pixel)/128: 62.48%#int(pixel)/152…
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4581651.html 本例是Sklearn网站上的关于决策树桩.决策树.和分别使用AdaBoost—SAMME和AdaBoost—SAMME.R的AdaBoost算法在分类上的错误率.这个例子基于Sklearn.datasets里面的make_Hastie_10_2数据库.取了12000个数据,其…