这两题都是求解同余方程,并要求出最小正整数解的 对于给定的Ax=B(mod C) 要求x的最小正整数解 首先这个式子可转化为 Ax+Cy=B,那么先用exgcd求出Ax+Cy=gcd(A,C)的解x 然后这个式子的一个特解就是 (B/gcd(A,C))* x 要注意如果gcd(A,C)无法整除B,那么这个式子无解 然后是求出最小整数解 Ax+Cy=B 方程的通解是 x+k*C/gcd(A,C), 另s=C/gcd(A,C) 所以最小整数解是(x%s+s)%s 青蛙题 /* x+km=y+kn(m…
#include<bits/stdc++.h> using namespace std; int gcd(int a,int b) {return b?gcd(b,a%b):a;} int exgcd(int &x,int &y,int a,int b) { if(!b) { x=1; y=0; return a; } int r=exgcd(x,y,b,a%b); int t=x; x=y; y=t-a/b*y; return r; } bool cal(int &x…
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写,结果发现会求出来小数,而且按照追击问题写的话,一圈就能相遇,但是!青蛙的步数可没有小数,而且青蛙是跳跃的,显然不能在空中相遇吧. 所以咧,先列出一个追击的式子 ,设步数为 t ,整数为K(转了K圈以后他们才到同一个地方) t * m + x = t * n + y + k * L ===> t *…
题意:求方程x2-Dy2=1的最小正整数解 思路:用连分数法解佩尔方程,关键是找出√d的连分数表示的循环节.具体过程参见:http://m.blog.csdn.net/blog/wh2124335/8871535 当d为完全平方数时无解 将√d表示成连分数的形式,例如: 当d不为完全平方数时,√d为无理数,那么√d总可以表示成: 记 当n为偶数时,x0=p,y0=q:当n为奇数时,x0=2p2+1,y0=2pq 求d在1000以内佩尔方程的最小正整数解的c++打表程序(正常跑比较慢,这个题需要离…
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #include <algorithm> #include <iostream> #include<sstream> #include<iterator> #include<cstring> #include<string> #include<…
题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃.问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出"Impossible".(蠢得可怜 -_-!) 解法:用拓展欧几里德求同余方程的最小正整数解.(a+mx)-(b+nx)=k*l (k表示圈数) → (m-n)x=k*l+b-a → (m-n)x=b-a(mod l).当然其实=(b-a)%l 更准确,但反正都是模,也没有关系啦.于是就像上题一…
题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若"永不停息"(←_←)*,就输出"FOREVER". 解法:用拓展欧几里德方法求出gcd最大公因数,再利用同余性质转化,求同余方程,或者不定方程.其中题目可化为 a+cx=b(mod 2^k) → cx=b-a(mod 2^k),求最小正整数解.也是求解同余方程. 先将方程化为一般形式:ax=…
题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i], - (0 < a[i] <= 10). 解法:先同上题一样用拓展欧几里德求出同余方程组的最后一个方程 X=ax+b,再调整 x 来求得 X 的解的个数.一些解释请看下面的代码. 注意--每次联立方程后求最小正整数解,可以提高代码速度. 1 #include<cstdio> 2 #i…
设方程 ax + by = c , 若 gcd(a,b) 是 c的因子(记作gcd(a,b)|c)则方程有解,反之无解. 其中x0,y0是方程的一组特解 , d = gcd(a,b), poj1061模型转化为(n-m)* t + L * k  = x - y  ,其中t和k是未知参数,形同ax+by = c 的形式,用extgcd即可求出x的一个特解,再通过这个特解找到x的最小正整数解就可以了. AC代码: #include<cstdio> #include<algorithm>…
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个直接的应用就是 如果ax+by=1有解,那么gcd(a,b)=1: int gcd(int a,int b){return b==0?a:gcd(b,a%b);} 然而这并不能告诉我们x,y解是多少. 扩欧 首先我们观察上面的式子发现一定有一个解a*1+b*0=gcd(a,b).(b%a=0) 但是…