Hession矩阵与牛顿迭代法】的更多相关文章

1.求解方程. 并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难.利用牛顿法,可以迭代求解. 原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f'(x0) 求解方程f(x)=0,即f(x0)+(x-x0)*f'(x0)=0,求解x = x1=x0-f(x0)/f'(x0),因为这是利用泰勒公式的一阶展开,f(x) = f(x0)+(x-x0)f'(x0)处并不是完全相等,而是近似相等,这里求得的x1并不能让f(x)=0,只能说f(x1)的值比…
牛顿迭代法,又名切线法,这里不详细介绍,简单说明每一次牛顿迭代的运算:首先将各个方程式在一个根的估计值处线性化(泰勒展开式忽略高阶余项),然后求解线性化后的方程组,最后再更新根的估计值.下面以求解最简单的非线性二元方程组为例(平面二维定位最基本原理),贴出源代码: 1.新建函数fun.m,定义方程组 function f=fun(x); %定义非线性方程组如下 %变量x1 x2 %函数f1 f2 syms x1 x2 f1 = sqrt((x1-4)^2 + x2^2)-sqrt(17); f2…
题目描述 有形如:ax3+bx2+cx+d=0 这样的一个一元三次方程.给出该方程中各项的系数(a,b,c,d 均为实数),并约定该方程存在三个不同实根(根的范围在-100至100之间),且根与根之差的绝对值>=1.要求由小到大依次在同一行输出这三个实根(根与根之间留有空格),并精确到小数点后2位. 提示:记方程f(x)=0,若存在2个数x1和x2,且x1<x2,f(x1)*f(x2)<0,则在(x1,x2)之间一定有一个根. 输入输出格式 输入格式: 一行,4个实数A,B,C,D. 输…
Atitit 迭代法  "二分法"和"牛顿迭代法 attilax总结 1.1. ."二分法"和"牛顿迭代法"属于近似迭代法1 1.2. 直接法(或者称为一次解法),即一次性的快速解决问题,1 1.3. 最常见的迭代法是"二分法 牛顿法.还包括以下算法1 1.4.  二分法(dichotomie)1 1.5. 牛顿迭代法(Newton's method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method…
转自利用牛顿迭代法自己写平方根函数sqrt 给定一个正数a,不用库函数求其平方根. 设其平方根为x,则有x2=a,即x2-a=0.设函数f(x)= x2-a,则可得图示红色的函数曲线.在曲线上任取一点(x0,f(x0)),其中x0≠0那么曲线上该点的切线方程为      (1-1) 求该切线与x轴的交点得      (1-2) 因为1-2式中x0作为分母,所以在之前限定了一下初始值不要选0.那么得到的这个与x轴的交点其实是最终要求得的x的一次逼近,我们再以这个x基准继续迭代就可以求得更逼近的x,…
参考: 0开方 是 0 1的开方式 1 2的开方式 1.4 3.的开方=(1.4+3/1.4)/2 牛顿迭代法:学习自 http://blog.csdn.net/youwuwei2012/article/details/34075241 public class Solution { public int sqrt(int x) { if(x==0)return 0; double pre=0; double cur=1; while(Math.abs(cur-pre)>0.000001) {…
问题描述 给定三次函数f(x)=ax3+bx2+cx+d的4个系数a,b,c,d,以及一个数z,请用牛顿迭代法求出函数f(x)=0在z附近的根,并给出迭代所需要次数. 牛顿迭代法的原理如下(参考下图): 设xk是方程f(x)=0的精确解x*附近的一个猜测解,过点Pk(xk,f(xk))作f(x)的切线.该切线与x轴的交点比xk更接近方程的精确解程x*. 迭代公式为:xk+1= xk - f(xk)/f '(xk),当f(x)的绝对值足够小的时候即可结束迭代. 注意:对于本题给定函数f(x),f…
高中好友突然问我一道这样的问题,似乎是因为他们专业要做一个计算器,其中的一道习题是要求计算器实现这样的功能. 整理一下要求:解aX + e^X = b 方程.解方程精度要求0.01,给定方程只有一解,a>0,b>0,0<X<20. 当被第一次问及这样一个问题的时候,我脑海里反映的第一个方法就是「牛顿迭代法(NewtonMethod」.然而自己算法功底太差了,从来没有真正去了解过牛顿迭代法,反正早晚都是要学的,正好便借着这个机会学习了一个. 我一直认为牛顿迭代法的效率应该是几个近似求…
牛顿迭代法(Newton's Method) 简介 牛顿迭代法(简称牛顿法)由英国著名的数学家牛顿爵士最早提出.但是,这一方法在牛顿生前并未公开发表. 牛顿法的作用是使用迭代的方法来求解函数方程的根.简单地说,牛顿法就是不断求取切线的过程. 对于形如f(x)=0的方程,首先任意估算一个解x0,再把该估计值代入原方程中.由于一般不会正好选择到正确的解,所以有f(x)=a.这时计算函数在x0处的斜率,和这条斜率与x轴的交点x1. f(x)=0中精确解的意义是,当取得解的时候,函数值为零(即f(x)的…