小文件导致任务执行缓慢的原因: 1.很容易想到的是map task 任务启动太多,而每个文件的实际输入量很小,所以导致了任务缓慢 这个可以通过 CombineTextInputFormat,解决,主要需要设置 mapreduce.input.fileinputformat.split.maxsize(单位byte) 2.其次是set input 文件太多,需要一个一个set ,所以花费的时间很多,导致任务启动就很慢了 这个只能提前merge好小文件,组成大文件,可能还有更好的办法,需要再研究…
mapreduce合并小文件成sequencefile http://blog.csdn.net/xiao_jun_0820/article/details/42747537…
目前平台使用Kafka + Flume的方式进行实时数据接入,Kafka中的数据由业务方负责写入,这些数据一部分由Spark Streaming进行流式计算:另一部分数据则经由Flume存储至HDFS,用于数据挖掘或机器学习.HDFS存储数据时目录的最小逻辑单位为“小时”,为了保证数据计算过程中的数据完整性(计算某个小时目录中的数据时,该目录的数据全部写入完毕,且不再变化),我们在Flume中加入了如下策略:   每五分钟关闭一次正在写入的文件,即新创建文件进行数据写入.   这样的方式可以保证…
最近发现离线任务对一个增量Hive表的查询越来越慢,这引起了我的注意,我在cmd窗口手动执行count操作查询发现,速度确实很慢,才不到五千万的数据,居然需要300s,这显然是有问题的,我推测可能是有小文件. 我去hdfs目录查看了一下该目录: 发现确实有很多小文件,有480个小文件,我觉得我找到了问题所在,那么合并一下小文件吧: insert into test select * from table distribute by floor (rand()*5); 这里使用distribute…
使用 使用使用 使用 HDFS 保存大量小文件的缺点:1.Hadoop NameNode 在内存中保存所有文件的“元信息”数据.据统计,每一个文件需要消耗 NameNode600 字节内存.如果需要保存大量的小文件会对NameNode 造成极大的压力.2.如果采用 Hadoop MapReduce 进行小文件的处理,那么 Mapper 的个数就会跟小文件的个数成线性相关(备注:FileInputFormat 默认只对大于 HDFS Block Size的文件进行划分).如果小文件特别多,MapR…
不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-reduce进行操作,打包后的文件由索引和存储两大部分组成         缺点:一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包.     SequeuesF…
5.1 小文件 大数据这个概念似乎意味着处理GB级乃至更大的文件.实际上大数据可以是大量的小文件.比如说,日志文件通常增长到MB级时就会存档.这一节中将介绍在HDFS中有效地处理小文件的技术. 技术24 使用Avro存储多个小文件假定有一个项目akin在google上搜索图片,并将数以百万计的图片存储分别在HDFS中.很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下: Hadoop的NameNode将所有的HDFS元数据保存在内存中以加快速度.Yahoo估计平均每个文件需要6…
一.小文件优化 1.Mapper类 package com.css.combine; import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; /** * 思路? * wordcou…
在MapReduce使用过程中.一般会遇到输入文件特别小(几百KB.几十MB).而Hadoop默认会为每一个文件向yarn申请一个container启动map,container的启动关闭是很耗时的. Hadoop提供了CombineFileInputFormat.一个抽象类.作用是将多个小文件合并到一个map中,我们仅仅需实现三个类: CompressedCombineFileInputFormat CompressedCombineFileRecordReader CompressedCom…
1.1 需求 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案 1.2 分析 小文件的优化无非以下几种方式: 1.  在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS: 2.  在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并. 自定义inputformat,将hdfs上面已经存在的多个小文件合并成一个sequenceFile, sequenceFile也是一种文件格式:里面装的内容就…