Light OJ 1067 Combinations (乘法逆元)】的更多相关文章

Description Given n different objects, you want to take k of them. How many ways to can do it? For example, say there are 4 items; you want to take 2 of them. So, you can do it 6 ways. Take 1, 2 Take 1, 3 Take 1, 4 Take 2, 3 Take 2, 4 Take 3, 4 Input…
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1067 1067 - Combinations Given n different objects, you want to take k of them. How many ways to can do it? For example, say there are 4 items; you want to take 2 of them. So, you can do it 6…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1102 As I am fond of making easier problems, I discovered a problem. Actually, the problem and k=. There are solutions. They are . . . . . . . . . . . . . . . As I have already told you that I us…
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1727  Solved: 1067 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可能很多,序列数对 10^9+7 取模. Input 第一行一个数 T,表示有 T 组数据. 接下来…
1067 - Combinations   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB Given n different objects, you want to take k of them. How many ways to can do it? For example, say there are 4 items; you want to take 2 of them. So, yo…
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的莫比乌斯反演式子并没有除法- 本脑子有坑选手的做法:20101009是一个质数,而且n和m的范围小于20101009,这一定有其原因.经过仔细思考,我们发现这保证了每个1~n的数都有mod20101009意义下的乘法逆元.用inv[x]表示x的逆元,我们发现原先的式子等于sigma{inv[gcd(i,j)]…
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K * M % N = 1 的最小k, 由这个式子我们可以得到y*N+1=k*M, 我们将这个式子变化一下, k*M+y'*N=1, 求最小的k, 就是求最小乘法逆元啦~ 解这个式子我们直接用exgcd()就好啦~ 代码: #include <bits/stdc++.h> using namespa…
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(ll l,ll r,ll &x,ll &y) { if(r==0){x=1;y=0;return l;} else { ll d=exgcd(r,l%r,y,x); y-=l/r*x; return d; } } 3.求a关于m的乘法逆元 ll mod_inverse(ll a,ll m){ l…
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减字母. 当能构成回文串时,我们只需考虑这个回文串左半部分的情况,所以这个问题也就变成了求一半字符串的有重复的全排列. 因为应用全排列公式中,会用大数除以大数再取余,除法不能简单的分子.分母取余再做除法,这时就要用到乘法逆元,同时用费马小定理求乘法逆元 相关公式:http://www.cnblogs.…
题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和HDU2196是一种类型的树形DP,因为它们都要分别求各个点的答案.然后解法也不难想: dp0[u]表示只考虑以u结点为根的子树的方案数 dp1[u]表示u结点往上走,倒过来,以它父亲为根那部分的方案数 有了这两部分的结果,对于各个点u的答案就是dp0[u]*(dp1[u]+1).这两部分求法如下,画…