IR的评价指标-MAP,NDCG和MRR】的更多相关文章

IR的评价指标-MAP,NDCG和MRR   MAP(Mean Average Precision): 单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主题的平均准确率的平均值.MAP 是反映系统在全部相关文档上性能的单值指标.系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高.如果系统没有返回相关文档,则准确率默认为0.例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关网页.某系统对于主题1检索出4个相关网页,其rank分别…
转自:http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主题的平均准确率的平均值.MAP 是反映系统在全部相关文档上性能的单值指标.系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高.如果系统没有返回相关文档,则准确率默认为0. 例如:假设有两个主题,主题1有4个相关网页,…
http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主题的平均准确率的平均值.MAP 是反映系统在全部相关文档上性能的单值指标.系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高.如果系统没有返回相关文档,则准确率默认为0.例如:假设有两个主题,主题1有4个相关网页,主题2有…
转自: https://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主题的平均准确率的平均值.MAP 是反映系统在全部相关文档上性能的单值指标.系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高.如果系统没有返回相关文档,则准确率默认为0.例如:假设有两个主题,主题1有4个相关网页…
MRR(Mean Reciprocal Rank): 是一个国际上通用的对搜索算法进行评价的机制,即第一个结果匹配,分数为1,第二个匹配分数为0.5,第n个匹配分数为1/n,如果没有匹配的句子分数为0.最终的分数为所有得分之和. 把标准答案在被评价系统给出结果中的排序取倒数作为它的准确度,再对所有的问题取平均.相对简单,举个例子:有3个query如下图所示: (黑体为返回结果中最匹配的一项) 可计算这个系统的MRR值为:(1/3 + 1/2 + 1)/3 = 11/18=0.61. MRR越大,…
常见指标 precision 预测出的所有目标中正确的比例 (true positives / true positives + false positives). recall 被正确定位识别的目标占总的目标数量的比例(true positives/(true positives + true negatives)). 一般情况下模型不够理想,准确率高.召回率低,或者召回率低.准确率高.如果做疾病监测.反垃圾,则是保准确率的条件下,提升召回率.如果是做搜索,那就是保证召回的情况下提升准确率.1…
首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. 我们有一个检测系统,去检测一个肿瘤病人是否为恶性. 那么,对我们的系统来说,有100个样本,5个正样本,95个负样本.假设分布为1,1,1,1,1,0,0,.......(即前5个人为恶性,后95个为良性). 假设我们的系统预测如下1,0,0,1,1,1,0.......,可以看到我们把第二个第三…
  一.准确率(Precision)和召回率(Recall)  (令R(u)是根据用户在训练集上的行为给用户作出的推荐列表,而T(u)是用户在测试集上的行为列表.) 对用户u推荐N个物品(记为R(u)),令用户u在测试集上喜欢的物品集合为T(u),然后可以通过准确率/召回率评测推荐算法的精度: 准确率描述最终的推荐列表中有多少比例是发生过的用户—物品评分记录: 召回率描述有多少比例的用户—物品评分记录包含在最终的推荐列表中.   准确率和召回率计算方法的Python代码如下: def Recal…
Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUlike are also frequently adopted. As for evaluation metrics, Root Mean Square Error (RMSE) and Mean Average Error (MAE) are usually used for rating pred…
1.       前言 我们知道排序在非常多应用场景中属于一个非常核心的模块.最直接的应用就是搜索引擎.当用户提交一个query.搜索引擎会召回非常多文档,然后依据文档与query以及用户的相关程度对文档进行排序,这些文档怎样排序直接决定了搜索引擎的用户体验.其它重要的应用场景还有在线广告.协同过滤.多媒体检索等的排序. LambdaMART是Learning To Rank的当中一个算法,适用于很多排序场景. 它是微软Chris Burges大神的成果,近期几年很火,屡次现身于各种机器学习大赛…