一道用来练习打标记的好题. 对于区间加和区间赋值两个操作分别用两个标记,分析如何打标记并下传标记(还是比较好分析的). 坑点:查询操作时,我一开始把ans设为-0x3f3f3f3f(调试了好久才发现),这显然是不对的(看题目的数据设置),将其赋值为-1e18就行了. 代码中注释的内容是另一种打标记的方法,未打标记的是自己想出来的(自认为更好懂一些). 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=1e6+10; 4…
洛谷题目传送门 \(O(n)\)的正解算法对我这个小蒟蒻真的还有点思维难度.洛谷题解里都讲得很好. 考试的时候一看到300000就直接去想各种带log的做法了,反正不怕T...... 我永远只会有最直观的思路(最差的程序效率) 题目相当于每次让我们找区间\([1,las-1]\)中上数第一个比当前盘子半径小的位置(las为上一次盘子掉到的位置)于是用线段树无脑搞一下,维护区间最小值,每次找这个位置,能往左跳就往左,不能的话再往右,当然如果超过了las-1就不用找了,直接放在las上面(相当于la…
LOJ 洛谷 最基本的思路同BZOJ2115 Xor,将图中所有环的异或和插入线性基,求一下线性基中数的异或最大值. 用bitset优化一下,暴力的复杂度是\(O(\frac{qmL^2}{w})\)的.(这就有\(70\)分?) 因为最开始的图是连通的,可以先求一个\(dis[i]\)表示\(1\)到\(i\)的异或和.每次加边会形成环,就是在线性基中插入一个元素. 因为有撤销,所以线段树分治就好了.线段树上每个节点开一个线性基.同一时刻只需要\(\log\)个线性基的空间. 复杂度\(O(\…
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的最长长度 $j=2$ 表示 $A[1]$ $j=3$ 表示 $A[2]$ 且是单调递减 $j=4$ 表示 $A[2]$ 且是单调递增 (为了方便,我们令 $seq[x]$ 表示当上文中的 $j=x$ 时表示哪个序列) 那么有转移方程: $dp[i][1]=\max\limits_{1\le j<i,…
洛谷P4145:https://www.luogu.org/problemnew/show/P4145 思路 这道题的重点在于sqrt(1)=1 一个限制条件 与正常线段树不同的是区间修改为开方 那么我们用一个数组记录每个区间的最大值 只有当这个区间的最大值大于1时才需要开方 因此 当我们更新到叶子节点时把每个区间的最大值和sum值开方即可 注意题目中说l可能大于r 要交换 代码 #include<iostream> #include<cmath> using namespace…
题目链接 洛谷P4588 题解 用线段树维护即可 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (int i = 1;…
题目: 洛谷 3822 分析: 直接按题意模拟,完了. 将每次加 / 减拆成不超过 \(32\) 个对单独一位的加 / 减. 考虑给一个二进制位(下称「当前位」)加 \(1\) 时,如果这一位本来就是 \(0\) ,那么直接变成 \(1\) .否则要考虑进位:向左(以后默认从右向左为低位至高位,与书写顺序相同)找到第一个为 \(0\) 的位 \(p\) ,将其变成 \(1\) ,并把从 \(p\) 到当前位中间所有的 \(1\) 变成 \(0\) . 减法是类似的.退位操作就是向左找到第一个 \…
洛谷P4556 雨天的尾巴 题目链接 题解: 因为一个点可能存放多种物品,直接开二维数组进行统计时间.空间复杂度都不能承受.因为每一个点所拥有的物品只与其子树中的点有关,所以可以考虑对每一个点来建立一颗权值线段树来维护多种物品以及其数量,然后最后在回溯时合并,这样就可以得到我们所需要的信息了. 因为题目中要求的是哪一种物品,所以我们可以顺带维护一下位置信息,就不用到时候每次去query了. 注意一下,就是当一个点的sum为0时,其pos应该为置为0. 详见代码吧: #include <bits/…
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一个点被覆盖次数大于m 我们将覆盖这个点的区间升序排序: 则所选区间一定是排序后序列中的一个长度为m+1的连续子序列 证明很容易,取更远的点会使最大值更大从而使差值最大 我们可以从这个结论出发,再观察该题所求,符合尺取法的思路 我们考虑用尺取法求解 没了解尺取法的读者可以去自行了解一下 如何求解呢?…
洛谷P2023:https://www.luogu.org/problemnew/show/P2023 思路 需要2个Lazy-Tag 一个表示加的 一个表示乘的 需要先计算乘法 再计算加法 来自你谷milkfilling大佬的解释: ①加法优先,即规定好segtree[root*2].value=((segtree[root*2].value+segtree[root].add)*segtree[root].mul)%p,问题是这样的话非常不容易进行更新操作,假如改变一下add的数值,mul也…