一.在实体识别中,bert+lstm+crf也是近来常用的方法.这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune.大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等.下面使用pad_sequences对句子长度进行截断以及padding填充,使每个输入句子的长度一致.构造训练集后,下载中文的预训练模型并加载相应的模型和词表vocab以参数配置,最后并利用albert抽取句…
声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity recognition),pytorch实现 基于bert与语料模型在多个NLP任务上取的不错效果,包括在命名实体识别(name entity recognition)上,在bert之前,主要采用的模型是Bi-lstm + CRF的方式,取得了不错效果. Bert横空出世后,至今已经深度侵入到序列标…
https://www.cnblogs.com/Determined22/p/7238342.html 这篇博客 里面这个公式表示抽象的含义,表示的是最后的分数由他们影响,不是直观意义上的相加. 为什么在后面使用的时候只输入了特征转移矩阵,没有观测矩阵: 1. 因为在LSTM或者是Transformer输出的时候,输出的是[batch_size, sequence_length, num_tags],只需要找到最符合的tag就行了 2. 为什么CRF是无向图:因为后面的标签要决定前面的标签.为什…
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果. 开源地址:https://github.com/xiaosongshine/NLP_NER_RNN_Keras 目录 0.概念讲解 0.1 NER 简介 0.2 深度学习方法在NER中的应用 2.编程实战 2.1 概述 2.2数据预处理 2.…
1.简介 NER(Named Entity Recognition,命名实体识别)又称作专名识别,是自然语言处理中常见的一项任务,使用的范围非常广.命名实体通常指的是文本中具有特别意义或者指代性非常强的实体,通常包括人名.地名.机构名.时间.专有名词等.NER系统就是从非结构化的文本中抽取出上述实体,并且可以按照业务需求识别出更多类别的实体,比如产品名称.型号.价格等. 命名实体识别是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,作为结构化信息提取的重要步骤. 2.常见算法 2…
原创作者 | 王翔 论文名称: Template-free Prompt Tuning for Few-shot NER 文献链接: https://arxiv.org/abs/2109.13532 01 前言 1.论文的相关背景 Prompt Learning通过设计一组合适的prompt将下游任务的输入输出形式重构成预训练任务中的形式,充分利用预训练阶段学习的信息,减少训练模型对大规模标注数据集的需求. 例如对于用户评论的情感分析任务:判断用户评论的"交通太不方便了."这句话蕴含的…
BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuningGitHub: https://github.com/macanv/BERT-BiLSTM-CRF-NER本文目录机构: 自己训练模型说明结果使用自己的数据2019.1.31更新,支持pip install package现在可以使用下面的命令下载软件包了: pip install bert-b…
实体识别和关系抽取是例如构建知识图谱等上层自然语言处理应用的基础.实体识别可以简单理解为一个序列标注问题:给定一个句子,为句子序列中的每一个字做标注.因为同是序列标注问题,除去实体识别之外,相同的技术也可以去解决诸如分词.词性标注等不同的自然语言处理问题. 说到序列标注直觉是会想到RNN的结构.现在大部分表现最好的实体识别或者词性标注算法基本都是biLSTM的套路.就像Ruder在他的博客 Deep Learning for NLP Best Practices 里面说的,There has b…
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法CRF) 2.使用规则对相关数据进行后过滤. 三.具体实现 1.训练数据的生成 主要使用了人民日报免费部分,以及一些及它从网上找到的资源(时间长了,记不住了,好像还自己标注了些) 2.模板的生成    使用的是Unigram,由于考虑到要识别的实体一般情况下没有长距离依赖 以及训练时的效率问题,所以模…
http://spaces.ac.cn/archives/3942/ 暑假期间做了一下百度和西安交大联合举办的核心实体识别竞赛,最终的结果还不错,遂记录一下.模型的效果不是最好的,但是胜在“端到端”,迁移性强,估计对大家会有一定的参考价值. 比赛的主题是“核心实体识别”,其实有两个任务:核心识别 + 实体识别.这两个任务虽然有关联,但在传统自然语言处理程序中,一般是将它们分开处理的,而这次需要将两个任务联合在一起.如果只看“核心识别”,那就是传统的关键词抽取任务了,不同的是,传统的纯粹基于统计的…