A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but these networks have been some of the most influential…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Part 2 Introduction Link to Part 1 In this post, we’ll go into a lot more of the specifics of ConvNets. Disclaimer: Now, I do reali…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About A Beginner's Guide To Understanding Convolutional Neural Networks Introduction Convolutional neural networks. Sounds like a weird combination of biology and math with a little CS sprinkled in, but…
原文链接:https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/ 借这篇文章进行卷积神经网络的初步理解(Convolutional Nerual Networks) Image Classification Image classification(图像分类) is the task of taking an inp…
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/ 讲CNN以及其在NLP的应用,非常深入浅出的讲法,好文,mark. When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs were responsible for major breakt…
When we hear about Convolutional Neural Network (CNNs), we typically think of Computer Vision. CNNs were responsible for major breakthroughs in Image Classification and are the core of most Computer Vision systems today, from Facebook’s automated pho…
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolutional Neural Networks Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C…
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络.并在图像识别的benchmark数据集上取得了卓越的成绩. 和之间的LeNet还是有着异曲同工之妙.这里涉及到 category 种类多的因素,该网络考虑了多通道卷积操作, 卷积操作也不是 LeNet 的单通道…
Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,现在终于来到了课程的重点.Convolutional Neural Networks, 简称CNN,与之前介绍的一般的神经网络类似,CNN同样是由可以学习的权值与偏移量构成,每一个神经元接收一些输入,做点积运算加上偏移量,然后选择性的通过一些非线性函数,整个网络最终还是表示成一个可导的loss function,网络的起始端是输入图像,网络的终端是每一类的预测值,通过一个ful…
Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型:Convolutional Neural Networks,简称CNN,主要利用CNN来做visual recognition,或者说是image classification,object recognition等.我自己在学习的过程中,一边翻译一边总结,整理出这些中文版的lecture not…
 申明:本文非笔者原创,原文转载自:http://www.36dsj.com/archives/24006 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先说几点自己对于CNN的感触.先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习…
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many vis…
Ahmet Taspinar Home About Contact Building Convolutional Neural Networks with Tensorflow Posted on augustus 15, 2017 adminPosted in convolutional neural networks, deep learning, tensorflow 1. Introduction In the past I have mostly written about ‘clas…
http://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/ http://web.eecs.utk.edu/~zzhang61/docs/reports/2016.10%20-%20Derivation%20of%20Backpropagation%20in%20Convolutional%20Neural%20Network%20(CNN).pdf http://ufld…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中.在测试数据上,我们得到了top-1 37.5%, top-5 17.0%的错误率,这个结果比目前的最好结果好很多.这个神经网络有6000万参数和650000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后是一个1…
第四周:Special applications: Face recognition & Neural style transfer 什么是人脸识别?(What is face recognition?) 欢迎来到第四周,即这门课卷积神经网络课程的最后一周.到目前为止,你学了很多卷积神经网络的知识.我这周准备向你展示一些重要的卷积神经网络的特殊应用,我们将从人脸识别开始,之后讲神经风格迁移,你将有机会在编程作业中实现这部分内容,创造自己的艺术作品. 让我们先从人脸识别开始,我这里有一个有意思的演…
About this Course This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applica…
Research Guide: Pruning Techniques for Neural Networks 2019-11-15 20:16:54 Original: https://heartbeat.fritz.ai/research-guide-pruning-techniques-for-neural-networks-d9b8440ab10d Pruning is a technique in deep learning that aids in the development of…
CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻译 综述深度卷积神经网络架构:从基本组件到结构创新 目录 摘要    1.引言    2.CNN基本组件        2.1 卷积层        2.2 池化层        2.3 激活函数        2.4 批次归一化        2.5 Dropout        2.6 全连接层…
今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving>,论文中的效果还不错,后来查了一下,有一个Tensorflow版本的实现,因此在自己的机器上配置了Tensorflow的环境,然后将其给出的demo跑通了,其中遇到了一些小问题,通过查找网络上的资料解决掉了,在这里…
这是Jake Bouvrie在2006年写的关于CNN的训练原理,虽然文献老了点,不过对理解经典CNN的训练过程还是很有帮助的.该作者是剑桥的研究认知科学的.翻译如有不对之处,还望告知,我好及时改正,谢谢指正! Notes on Convolutional Neural Networks Jake Bouvrie 2006年11月22 1引言 这个文档是为了讨论CNN的推导和执行步骤的,并加上一些简单的扩展.因为CNN包含着比权重还多的连接,所以结构本身就相当于实现了一种形式的正则化了.另外CN…
零.说明: 本文的所有代码均可在 DML 找到,欢迎点星星. 注.CNN的这份代码非常慢,基本上没有实际使用的可能,所以我只是发出来,代表我还是实践过而已 一.引入: CNN这个模型实在是有些年份了,最近随着深度学习的兴起又开始焕发青春了,把imagenet测试的准确度提高了非常多,一个是Alex的工作,然后最近好像Zeiler又有突破性的成果,可惜这些我都没看过,主要是imagenet的数据太大了,我根本没有可能跑得动,所以学习的积极性有些打折扣.不说那么多,还是先实现一个最基础的CNN再说吧…
The Impact of Imbalanced Training Data for Convolutional Neural Networks Paulina Hensman and David Masko 摘要 本论文从实验的角度调研了训练数据的不均衡性对采用CNN解决图像分类问题的性能影响.CIFAR-10数据集包含10个不同类别的60000个图像,用来构建不同类间分布的数据集.例如,一些训练集中包含一个类别的图像数目与其他类别的图像数目比例失衡.用这些训练集分别来训练一个CNN,度量其得…
本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classification . 对于房门号的数字识别问题,文中提出的方法是基于卷积神经网络的,卷积神经网络集特征提取与目标分类于一体,这一点有别于传统的识别方法(传统方法中一般都是基于人工设计的特征提取器,然后把提取到的特征输入给分类器). 文中在传统的卷积神经网络基础上有两点改进: 第一:pooling层,传统的方法的…
Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking  arXiv Paper Project Page:http://guanghan.info/projects/ROLO/ GitHub:https://github.com/wangxiao5791509/ROLO 摘要:本文提出了一种新的方法进行空间监督 RCNN 来进行目标跟踪.我们通过深度神经网络来学习到  loc…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…