首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
OpenCV直方图(直方图、直方图均衡,直方图匹配,原理、实现)
】的更多相关文章
OpenCV直方图(直方图、直方图均衡,直方图匹配,原理、实现)
1 直方图 灰度级范围为 \([0,L-1]\) 的数字图像的直方图是离散函数 \(h(r_k) = n_k\) , 其中 \(r_k\) 是第\(k\)级灰度值,\(n_k\) 是图像中灰度为 \(r_k\) 的像素个数.在实践中,经常用乘积 \(MN\) 表示的图像像素的总数除它的每个分量来归一化直方图,通常 \(M\) 和 \(N\) 是图像的行和列的位数.因此,归一化后的直方图由 \(p(r_k) = n_k/MN\) 给出,其中 \(k = 0, 1, ... ,L-1\) .简单地说…
【图像处理】基于OpenCV底层实现的直方图匹配
image processing 系列: [图像处理]图片旋转 [图像处理]高斯滤波.中值滤波.均值滤波 直方图匹配算法.又称直方图规定化.简单说.就是依据某函数.或者另外一张图片的引导,使得原图改变. 感觉解释的最好的是:http://www.360doc.com/content/13/1106/16/10724725_327179043.shtml 完整代码:github (里面同一时候包括OSTU / 大津算法.直方图均衡化等算法,还包括两种測试图片). 由于我个人兴趣爱好(放P就是老师逼…
直方图匹配原理与python、matlab实现
直方图匹配本质上是让两幅图像的累积直方图尽量相似,累积直方图相似了,直方图也就相似了. 把原图像img的直方图匹配到参考图像ref的直方图,包括以下几个步骤: 1. 求出原图像img的累积直方图img_accu: 2. 求出参考图像ref的累积直方图ref_accu: 3. 灰度级g在img_accu中对应的值记为img_accu_g,找出ref_accu中与ref_accu_g最接近的值,记为ref_accu_G,记该值对应的灰度级为G: 4. 根据g和G的对应关系,得到img经过匹配之后的直…
12、OpenCV实现图像的直方图处理
1.直方图 一幅图像由不同灰度值的像素组成,图像中灰度的分布情况是该图像的一个重要特征.图像的灰度直方图就描述了图像中灰度分布情况,能够很直观的展示出图像中各个灰度级所占的多少.图像的灰度直方图是灰度级的函数,描述的是图像中具有该灰度级的像素的个数:其中,横坐标是灰度级,纵坐标是该灰度级出现的频率. 不过通常会将纵坐标归一化到[0,1][0,1]区间内,也就是将灰度级出现的频率(像素个数)除以图像中像素的总数.灰度直方图的计算公式如下: 其中 rk是像素的灰度级 nk是具有灰度rk的像素个数 M…
opencv python:图像直方图 histogram
直接用matplotlib画出直方图 def plot_demo(image): plt.hist(image.ravel(), 256, [0, 256]) # image.ravel()将图像展开,256为bins数量,[0, 256]为范围 plt.show() 图像直方图 def image_hist(image): color = ('blue', 'green', 'red') for i, color in enumerate(color): # 计算出直方图,calcHist(i…
直方图均衡化与直方图规定化的MATLAB实现
目录 1.直方图均衡化 2.直方图规定化 @ 1.直方图均衡化 对图像进行非线性拉伸,重新分配图像像元值,使一定灰度范围内像元值的数量大致相等就是直方图的均衡化.原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小,会产生粗略的分类的视觉效果. 在MATLAB中,histeq函数用于直方图的均衡化. 实现代码如下 clear close all clc I=imread('peppers.png'); subplot(…
OpenCV图像的轮廓的匹配
http://blog.sina.com.cn/s/blog_67a7426a0101cxl0.html 一个跟轮廓相关的最常用到的功能是匹配两个轮廓.如果有两个轮廓,如何比较它们;或者如何比较一个轮廓和另一个抽象模板. 矩 比较两个轮廓最简洁的方式是比较他们的轮廓矩.这里先简短介绍一个矩的含义.简单的说,矩是通过对轮廓上所有点进行积分运算(或者认为是求和运算)而得到的一个粗略特征.通常,我们如下定义一个轮廓的(p,q)矩: 在公式中p对应x纬度上的矩,q对应y维度上的矩,q对应y维度上的矩,阶…
OpenCV 学习笔记(模板匹配)
OpenCV 学习笔记(模板匹配) 模板匹配是在一幅图像中寻找一个特定目标的方法之一.这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否"相似",当相似度足够高时,就认为找到了我们的目标. 在 OpenCV 中,提供了相应的函数完成这个操作. matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置 在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两…
NFA引擎匹配原理
1 为什么要了解引擎匹配原理 一个个音符杂乱无章的组合在一起,弹奏出的或许就是噪音,同样的音符经过作曲家的手,就可以谱出非常动听的乐曲,一个演奏者同样可以照着乐谱奏出动听的乐曲,但他/她或许不知道该如何去改变音符的组合,使得乐曲更动听. 作为正则的使用者也一样,不懂正则引擎原理的情况下,同样可以写出满足需求的正则,但是不知道原理,却很难写出高效且没有隐患的正则.所以对于经常使用正则,或是有兴趣深入学习正则的人,还是有必要了解一下正则引擎的匹配原理的. 2 正则表达式引擎…
CSS选择器以及优先级与匹配原理
最常用的五类CSS选择器 准确而简洁的运用CSS选择器会达到非常好的效果.我们不必通篇给每一个元素定义类(class)或ID,通过合适的组织,可以用最简单的方法实现同样的效果.在实际工作中,最常用的选择器有以下五类: 一.标签选择器: 顾名思议,标签选择器是直接将HTML标签作为CSS选择器,可以是p.h1.dl.strong等HTML标签.如: p{font:12px;} em{color:blue;} dl{float:left;margin-top:10px;} 二.id选择器: 我们通常…