周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). 键值对(PaiRDD) 1.创建 #在Python中使用第一个单词作为键创建一个pairRDD,使用map()函数 pairs = lines.map(lambda x:(x.split(" ")[0],x)) 2.转化(Transformation) 转化操作很多,有reduceByK…
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足,中文译版评分8.4,评论一片好评,有点意思.我倒觉得这本书可以作为官方文档的一个补充,刷完后基本上对Spark的一些基本概念.码简单的程序是没有问题的了.这本书有一个好处是它是用三门语言写的,Python/Java/Scala,所以适用性很广,我的观点是,先精通一门语言,再去学其他语言.由于我工作中比较常用…
本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Streaming可以很好的解决上述类似的问题. 了解Spar…
<Learning Spark>这本书算是Spark入门的必读书了,中文版是<Spark快速大数据分析>,不过豆瓣书评很有意思的是,英文原版评分7.4,评论都说入门而已深入不足,中文译版评分8.4,评论一片好评,有点意思.我倒觉得这本书可以作为官方文档的一个补充,刷完后基本上对Spark的一些基本概念.码简单的程序是没有问题的了.这本书有一个好处是它是用三门语言写的,Python/Java/Scala,所以适用性很广,我的观点是,先精通一门语言,再去学其他语言.由于我工作中比较常用…
机器学习实战(Machine Learning in Action)学习笔记————03.决策树原理.源码解析及测试 关键字:决策树.python.源码解析.测试作者:米仓山下时间:2018-10-24机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/ma…
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计算机科学家的目标是得出一个算法(algorithm) ,写出一组解决该问题可能出现的任何情况的步步为营的指令.算法通过有限过程解决问题.算法是解决方案. 计算机科学可以被看作是对算法的研究. 可计算 抽象 理解什么是"抽象"以及抽象在问题解决过程中的作用 定义 抽象使我们能以一种区分所谓的…
(hadoop安装方法:http://blog.csdn.net/wangjia55/article/details/53160679这里不再累述) hadoop是针对大数据设计的一个计算架构.如果你有几百TB的数据需要检索,你在控制终端敲下命令,计算机会向几百分布式台云服务器同时发布命令,使他们开始运行.并且把结果返回给你 hadoop分为大概念, HDFS(分布式文件系统)+MapReduce(分布式计算模型) HDFS 优点 适合大文件的存储,并且由备份策略,有比较好的容错和恢复机制,支持…
过滤序列元素: 有一个序列,想从其中过滤出想要的元素.最常用的办法就是列表过滤:比如下面的形式:这个表达式的意义是从1000个随机数中选出大于400的数据 test=[] for i in range(1000):     test.append(random.randint(1,1000)) ret=[n for n in test if n >400] 根据cookbook书上的描述,这个方法适用于小数据的方式.如果数据集非常的大,而且要考虑内存的话建议使用生成器的方式ret=(n for…
错误与异常 AttributeError:尝试访问未知的对象属性 eg. >>> class myClass(object): ... pass ... >>> my = myClass() >>> my.name = 'Yanta' >>> my.name 'Yanta' >>> my.age Traceback (most recent call last): File "<stdin>&q…