首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【BZOJ4652】【NOI2016】循环之美(莫比乌斯反演,杜教筛)
】的更多相关文章
NOI 2016 循环之美 (莫比乌斯反演+杜教筛)
题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接 任何形容词也不够赞美这一道神题 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j)==1][gcd(j,K)==1]$ $\sum\limits_{j=1}^{M}[gcd(j,K)==1]\sum\limits_{i=1}^{N}[gcd(i,j)==1]$ 我们先处理右边的式子$\sum\limits_{i=1}^{N}[gcd(i,j)==1]$: $\sum\limits…
BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)
Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知的十进制数 n 和 m,在 kk 进制下,有多少个数值上互不相等的纯循环小数,可以用分数 xy 表示,其中 1≤x≤n,1≤y≤m,且 x,y是整数 .一个数是纯循环的,当且仅当其可以写成以下形式:a.c1˙c2c3…cp-1cp˙其中,a 是一个整数,p≥1:对于 1 ≤i≤p,ci是 k…
[复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. 输出 输出一个整数,为…
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. \[N,K,L,H \leq 10^9,H-L \leq 10^5\] 分析 \(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了…
BZOJ4652 NOI2016循环之美(莫比乌斯反演+杜教筛)
因为要求数值不同,不妨设gcd(x,y)=1.由提示可以知道,x/y是纯循环小数的充要条件是x·klen=x(mod y).因为x和y互质,两边同除x,得klen=1(mod y).那么当且仅当k和y互质,存在len使该式成立. 于是现在要求的就是 k是固定的,先不管后面一部分.套路地化式子: 设f(i)=[i⊥k].注意到k很小,并且显然有gcd(j,k)=gcd(j%k,k).于是O(k)的预处理出f的前缀和. 那么几乎已经做到线性了,能拿到84分,感觉非常棒. 然而要A掉还需要低于线性的做…
BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】
题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10\)进制下如果\(\frac{x}{y}\)是纯循环的,只要\(2 \perp y\)且\(5 \perp y\) 可以猜想在\(k\)进制下同样成立 证明: 若\(\frac{x}{y}\)为纯循环小数,设其循环节长度为\(l\),那么一定满足 \[\{ \frac{xk^{l}}{y} \} =…
【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌斯反演,详见这篇博客:初学莫比乌斯反演. 推式子 下面让我们来推式子. 首先,我们采用解决这种问题的常用套路,来枚举\(gcd\),就能得到这样一个式子: \[\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\fra…
51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d=1}^{n}[gcd(i,j)==d]d \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d] \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{\left…
[HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf(i) mod 109+7~mod~10^9+7 mod 109+7 1<=T<=5001<=N<=1091<=T<=500\\1<=N<=10^91<=T<=5001<=N<=109 只有最多555组数据N>106N>10…
BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛
题意简述 给你两个整数\(n\),\(k\),让你求出这个式子 \[ \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k=a_{k-1}}^n \left[ \gcd {(a_1,a_2,a_3\cdots,a_k)} = 1\right] \] 做法 对于\(\gcd\)进行莫比乌斯反演 \[ Ans = \sum_p \mu(p) \sum_{a_1=1}^n \sum_{a_2=a_1}^{\frac{n}{p…
洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i=1}^n\sum_{j=1}^n ij(i,j)&=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n ij[(i,j)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\l…
HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设了一个\(F(n) = \sum_{d|n}f(d)\),那么由莫比乌斯反演可以得到\(f(n)=\sum_{d|n}\mu(d)F(\frac{n}{d})\). 然后卷积可以看出卷一个\(I\)比较好,则:\((f*g)(n)=\sum_{i=1}^nF(i)-\sum_{i=2}^nS(\lf…
牛客练习赛84F-牛客推荐系统开发之下班【莫比乌斯反演,杜教筛】
正题 题目链接:https://ac.nowcoder.com/acm/contest/11174/F 题目大意 给出\(n,k\)求 \[\sum_{i_1=1}^n\sum_{i_2=1}^n...\sum_{i_k=1}^ngcd(f_{i_1},f_{i_2},...,f_{i_{k}}) \] 对\(10^9+9\)取模 其中\(f_i\)表示斐波那契数列的第\(i\)项 \(1\leq n,k\leq 10^8\) 解题思路 看上去就很莫比乌斯反演,首先把\(f\)提出来然后直接上莫…
LOJ#6491. zrq 学反演(莫比乌斯反演 杜教筛)
题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \mu(\frac{T}{d})\] 后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了 设\(F(n) = n, f(n) = \phi(n)\) 根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\) 反演一下 \…
【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N",其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模1000000007的值. Sample Input 2…
luogu3172 [CQOI2015]选数 莫比乌斯反演+杜教筛
link 题目大意:有N个数,每个数都在区间[L,H]之间,请求出所有数的gcd恰好为K的方案数 推式子 首先可以把[L,H]之间的数字gcd恰好为K转化为[(L-1)/K+1,H/K]之间数字gcd恰好为1 然后就可以反演了 下面手误把所有的H都打成了R \(\sum_{i_1=L}^R\sum_{i_2=L}^R\dots\sum_{i_N=L}^R[\gcd(i_1,i_2,\dots,i_N)=1]\) \(\sum_{i_1=L}^R\sum_{i_2=L}^R\dots\sum_{i…
2019年南京网络赛E题K Sum(莫比乌斯反演+杜教筛+欧拉降幂)
目录 题目链接 思路 代码 题目链接 传送门 思路 首先我们将原式化简: \[ \begin{aligned} &\sum\limits_{l_1=1}^{n}\sum\limits_{l_2=1}^{n}\dots\sum\limits_{l_k=1}^{n}gcd(l_1,l_2,\dots,l_k)^2&\\ =&\sum\limits_{d=1}^{n}d^2\sum\limits_{l_1=1}^{n}\sum\limits_{l_2=1}^{n}\dots\sum\li…
LOJ#6229. 这是一道简单的数学题(莫比乌斯反演+杜教筛)
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n<=10^9\) \(Solution\) 以前做的反演题都是\(j\)枚举到\(n\),但是现在\(j\)只枚举到\(i\)就非常难受,考虑怎么求\(\sum_{i=1}^n\sum_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}\). 可以把它看成是一个\(n*n\)的网格,第\(i\…
BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\frac{R}{k}}\sum_{i'=\frac{L}{k}}^{\frac{R}{k}}....[gcd_{i=1}^{n}(i)==1]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\frac{R}{k}}\sum_{i'=\frac{L}{k}}^{\frac{R}…
51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]
1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \frac{a}{gcd}, \frac{b}{gcd}\),然后\(\mu\)代入,就是 \[ \sum_{d=1}^{\sqrt{n}}\mu(d) \sum_i \sum_j \sum_k [ijk \le \frac{n}{d^2}] \] 问题就是怎么求后面的式子了 一开始我是 \[ f(n) = \s…
【XSY2754】求和 莫比乌斯反演 杜教筛
题目描述 给你\(n,p\),求 \[ \sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^i\gcd(i,j,k)\mod p \] \(n\leq {10}^9\) 题解 \[ \begin{align} ans&=\sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^i\gcd(i,j,k)\\ &=\sum_{i=1}^n\sum_{j=1}^i\sum_{k=1}^i\sum_{d|\gcd(i,j,k)}\varphi(d)\\ &=\…
51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Solution\) 首先 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n[gcd(i,j)=d]\] 注意不是\(\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)=\sum_{d=1}^n\sum…
【GDKOI2017】小队任务 莫比乌斯反演+杜教筛
题目大意:给你n,求$\sum_{i=1}^{n}\sum_{j=i}^{n}[gcd(i,j)=1](i+1)(j+1)$ 子任务一:暴力 子任务二:$T=50000,n≤10^7$ 子任务三:$T=3,n≤10^{10}$ 解法一: 我们化一下这个式子 $\sum_{i=1}^{n}\sum_{j=i}^{n}[gcd(i,j)=1](i+1)(j+1)$ $=\sum_{i=1}^{n}\sum_{j=i}^{n}\sum_{k|gcd(i,j)} \mu(k)(i+1)(j+1)$ $=…
BZOJ 4176 Lucas的数论 莫比乌斯反演+杜教筛
题意概述:求,n<=10^9,其中d(n)表示n的约数个数. 分析: 首先想要快速计算上面的柿子就要先把d(ij)表示出来,有个神奇的结论: 证明:当且仅当a,b没有相同的质因数的时候我们统计其贡献,可以发现所有被统计的(a,b)乘积的质因数分解形式正好和i,j的所有因数的质因数分解形式一一对应,不重不漏(对于b中质因数指数不为0对应的就是i中指数+b中指数的情况,对于b中质因数指数为0的情况对应i中指数的情况). 然后就有如下的推导: 对于这个式子,整个数字分段来算,n/d一共sqrt(n)种…
「洛谷P3768」简单的数学题 莫比乌斯反演+杜教筛
题目链接 简单的数学题 题目描述 输入一个整数n和一个整数p,你需要求出 \[\sum_{i=1}^n\sum_{j=1}^n (i\cdot j\cdot gcd(i,j))\ mod\ p\] 其中\(gcd(a,b)\)表示\(a\)与\(b\)的最大公约数 输入 一行两个整数\(p,n\) 输出 一行一个整数,为题目中所求值 样例 样例输入 998244353 2000 样例输出 883968974 数据范围 \(n\leq 10^{10}\) \(5\times 10^8 \leq…
BZOJ4176 Lucas的数论 【莫比乌斯反演 + 杜教筛】
题目 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i<=N",其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值: 其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. 输入格式 第一行一个整数n. 输出格式 一行一个整数ans,表示答案模1000000007的值. 输入样例 2 输出样例 8 提示 对于100%的数据…
洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\)是质数 题解 推导很长就省略啦,, 有空补回来 最后推得这个式子: \[\sum\limits_{T = 1}^{n} (\frac{\lfloor \frac{n}{T} \rfloor * (\lfloor \frac{n}{T} \rfloor + 1)}{2})^2 * T^2 * \varphi…
51nod 1220 约数之和【莫比乌斯反演+杜教筛】
首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \] \[ \sum_{p=1}^{n}\sum_{q=1}^{n}[gcd(p,q)==1]\sum_{p|i}\sum_{q|j}\frac{pj}{q} \] \[…
bzoj 4176: Lucas的数论【莫比乌斯反演+杜教筛】
首先由这样一个结论: \[ d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] 然后推反演公式: \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{p|i}\sum_{q|j}[gcd(p,q)==1] \] \[ \sum_{p=1}^{n}\sum_{q=1}^{n}[gcd(p,q)==1]\left \lfloor \frac{n}{p} \right \rfloor\left \lfloor \frac{n}{q} \right…